Autoencoder-based Condition Monitoring and Anomaly Detection Method for
Rotating Machines
- URL: http://arxiv.org/abs/2101.11539v1
- Date: Wed, 27 Jan 2021 16:49:49 GMT
- Title: Autoencoder-based Condition Monitoring and Anomaly Detection Method for
Rotating Machines
- Authors: Sabtain Ahmad, Kevin Styp-Rekowski, Sasho Nedelkoski, Odej Kao
- Abstract summary: We propose an autoencoder model-based method for condition monitoring of rotating machines by using an anomaly detection approach.
The proposed method can directly extract the salient features from raw vibration signals.
Experimental results on two real-world datasets indicate that our proposed solution gives promising results.
- Score: 0.19116784879310028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rotating machines like engines, pumps, or turbines are ubiquitous in modern
day societies. Their mechanical parts such as electrical engines, rotors, or
bearings are the major components and any failure in them may result in their
total shutdown. Anomaly detection in such critical systems is very important to
monitor the system's health. As the requirement to obtain a dataset from
rotating machines where all possible faults are explicitly labeled is difficult
to satisfy, we propose a method that focuses on the normal behavior of the
machine instead. We propose an autoencoder model-based method for condition
monitoring of rotating machines by using an anomaly detection approach. The
method learns the characteristics of a rotating machine using the normal
vibration signals to model the healthy state of the machine. A threshold-based
approach is then applied to the reconstruction error of unseen data, thus
enabling the detection of unseen anomalies. The proposed method can directly
extract the salient features from raw vibration signals and eliminate the need
for manually engineered features. We demonstrate the effectiveness of the
proposed method by employing two rotating machine datasets and the quality of
the automatically learned features is compared with a set of handcrafted
features by training an Isolation Forest model on either of these two sets.
Experimental results on two real-world datasets indicate that our proposed
solution gives promising results, achieving an average F1-score of 99.6%.
Related papers
- Statistical Batch-Based Bearing Fault Detection [0.0]
In the domain of rotating machinery, bearings are vulnerable to different mechanical faults, including ball, inner, and outer race faults.
Various techniques can be used in condition-based monitoring, from classical signal analysis to deep learning methods.
arXiv Detail & Related papers (2024-07-24T12:45:02Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - Zero-Shot Motor Health Monitoring by Blind Domain Transition [17.664784126708742]
We propose a zero-shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics.
Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.
arXiv Detail & Related papers (2022-12-12T18:36:02Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Detecting Faults during Automatic Screwdriving: A Dataset and Use Case
of Anomaly Detection for Automatic Screwdriving [80.6725125503521]
Data-driven approaches, using Machine Learning (ML) for detecting faults have recently gained increasing interest.
We present a use case of using ML models for detecting faults during automated screwdriving operations.
arXiv Detail & Related papers (2021-07-05T11:46:00Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.