論文の概要: Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification
- arxiv url: http://arxiv.org/abs/2411.10754v1
- Date: Sat, 16 Nov 2024 09:22:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:20.451600
- Title: Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification
- Title(参考訳): 慢性腎臓病リスク階層化のための統合型機械学習と生存分析モデル
- Authors: Zachary Dana, Ahmed Ammar Naseer, Botros Toro, Sumanth Swaminathan,
- Abstract要約: 慢性腎疾患(CKD)は公衆衛生上の重要な課題であり、早期に発見・管理されていない場合、しばしばエンドステージ腎疾患(ESRD)へと進行する。
本稿では,機械学習技術と古典統計モデルを組み合わせて,CKDの進行をモデル化する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Chronic kidney disease (CKD) is a significant public health challenge, often progressing to end-stage renal disease (ESRD) if not detected and managed early. Early intervention, warranted by silent disease progression, can significantly reduce associated morbidity, mortality, and financial burden. In this study, we propose a novel approach to modeling CKD progression using a combination of machine learning techniques and classical statistical models. Building on the work of Liu et al. (2023), we evaluate linear models, tree-based methods, and deep learning models to extract novel predictors for CKD progression, with feature importance assessed using Shapley values. These newly identified predictors, integrated with established clinical features from the Kidney Failure Risk Equation, are then applied within the framework of Cox proportional hazards models to predict CKD progression.
- Abstract(参考訳): 慢性腎疾患(CKD)は公衆衛生上の重要な課題であり、早期に発見・管理されていない場合、しばしばエンドステージ腎疾患(ESRD)へと進行する。
早期の介入は、サイレント病の進行によって保証され、関連する死亡率、死亡率、財政的負担を著しく減少させる。
本研究では,機械学習技術と古典統計モデルを組み合わせて,CKDの進行をモデル化する手法を提案する。
Liu et al (2023) の業績に基づいて線形モデル,木に基づく手法,ディープラーニングモデルを評価し,新しいCKD進行予測器を抽出し,Shapley値を用いて特徴的重要性を評価する。
新たに同定されたこれらの予測器は、Kidney Failure Risk Equationの確立した臨床特徴と統合され、Cox比例ハザードモデルの枠組みに応用され、CKDの進行を予測する。
関連論文リスト
- Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.26217304977339473]
慢性腎臓病(英: chronic Kidney Disease、CKD)は、腎臓の構造と機能に大きな影響を及ぼし、最終的に腎不全を引き起こす異種性疾患である。
本研究の目的は、アンサンブル学習と説明可能なAIを用いて、早期予後とCKDの検出のための支配的特徴、特徴スコア、および値の可視化である。
論文 参考訳(メタデータ) (2024-06-10T18:46:14Z) - Modeling Long Sequences in Bladder Cancer Recurrence: A Comparative Evaluation of LSTM,Transformer,and Mamba [0.0]
本研究では,Cox比例ハザードモデルを用いて,時系列データを扱う深層学習モデルの利点を統合する。
LSTM-Coxモデルは、TransformerやMambaといった新しいモデルにまたがる、リカレントなデータ解析と特徴抽出のための堅牢で効率的な方法である。
論文 参考訳(メタデータ) (2024-05-28T18:38:15Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - FastCPH: Efficient Survival Analysis for Neural Networks [57.03275837523063]
我々は,線形時間で動作する新しい手法であるFastCPHを提案し,連結イベントに対する標準的なBreslow法とEfron法の両方をサポートする。
また,FastCPHとLassoNetの併用による特徴空間の解釈性も実証した。
論文 参考訳(メタデータ) (2022-08-21T03:35:29Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Sparse Longitudinal Representations of Electronic Health Record Data for
the Early Detection of Chronic Kidney Disease in Diabetic Patients [6.040252097102974]
慢性腎疾患 (CKD) は、徐々に腎機能を失っていく疾患である。
本稿では,患者の医療記録の少ない縦長表現を学習するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-11-09T22:07:25Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。