DEAL: Decoupled Classifier with Adaptive Linear Modulation for Group Robust Early Diagnosis of MCI to AD Conversion
- URL: http://arxiv.org/abs/2411.10814v2
- Date: Mon, 25 Nov 2024 06:45:44 GMT
- Title: DEAL: Decoupled Classifier with Adaptive Linear Modulation for Group Robust Early Diagnosis of MCI to AD Conversion
- Authors: Donggyu Lee, Juhyeon Park, Taesup Moon,
- Abstract summary: deep learning-based Alzheimer's disease diagnosis has recently made significant advancements.
There remains a critical gap in research regarding the group robustness of the diagnosis.
We present the first comprehensive investigation of the group robustness in the early diagnosis of MCI to AD conversion using MRI images.
- Score: 16.723285384727028
- License:
- Abstract: While deep learning-based Alzheimer's disease (AD) diagnosis has recently made significant advancements, particularly in predicting the conversion of mild cognitive impairment (MCI) to AD based on MRI images, there remains a critical gap in research regarding the group robustness of the diagnosis. Although numerous studies pointed out that deep learning-based classifiers may exhibit poor performance in certain groups by relying on unimportant attributes, this issue has been largely overlooked in the early diagnosis of MCI to AD conversion. In this paper, we present the first comprehensive investigation of the group robustness in the early diagnosis of MCI to AD conversion using MRI images, focusing on disparities in accuracy between groups, specifically sMCI and pMCI individuals divided by age. Our experiments reveal that standard classifiers consistently underperform for certain groups across different architectures, highlighting the need for more tailored approaches. To address this, we propose a novel method, dubbed DEAL (DEcoupled classifier with Adaptive Linear modulation), comprising two key components: (1) a linear modulation of features from the penultimate layer, incorporating easily obtainable age and cognitive indicative tabular features, and (2) a decoupled classifier that provides more tailored decision boundaries for each group, further improving performance. Through extensive experiments and evaluations across different architectures, we demonstrate the efficacy of DEAL in improving the group robustness of the MCI to AD conversion prediction.
Related papers
- Class Balancing Diversity Multimodal Ensemble for Alzheimer's Disease Diagnosis and Early Detection [1.1475433903117624]
Alzheimer's disease poses significant global health challenges due to its increasing prevalence and associated societal costs.
Traditional diagnostic methods and single-modality data often fall short in identifying early-stage AD.
This study introduces a novel approach: multImodal enseMble via class BALancing diversity for iMbalancEd Data (IMBALMED)
arXiv Detail & Related papers (2024-10-14T10:56:43Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
Alzheimer's disease (AD) is the most prevalent form of dementia with a progressive decline in cognitive abilities.
We leveraged structural and functional MRI to investigate the disease-induced GM and functional network connectivity changes.
We propose a novel DL-based classification framework where a generative module employing Cycle GAN was adopted for imputing missing data.
arXiv Detail & Related papers (2024-06-19T07:31:47Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Multimodal Attention-based Deep Learning for Alzheimer's Disease
Diagnosis [9.135911493822261]
Alzheimer's Disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses.
We present a Multimodal Alzheimer's Disease Diagnosis framework (MADDi) to accurately detect the presence of AD.
arXiv Detail & Related papers (2022-06-17T15:10:00Z) - Cross-Modality Earth Mover's Distance for Visible Thermal Person
Re-Identification [82.01051164653583]
Visible thermal person re-identification (VT-ReID) suffers from the inter-modality discrepancy and intra-identity variations.
We propose the Cross-Modality Earth Mover's Distance (CM-EMD) that can alleviate the impact of the intra-identity variations during modality alignment.
arXiv Detail & Related papers (2022-03-03T12:26:59Z) - Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network [0.0]
Frontotemporal dementia and Alzheimer's disease are two common forms of dementia and are easily misdiagnosed as each other.
Differentiating between the two dementia types is crucial for determining disease-specific intervention and treatment.
Recent development of Deep-learning-based approaches in the field of medical image computing are delivering some of the best performance for many binary classification tasks.
arXiv Detail & Related papers (2021-09-12T22:40:50Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.