論文の概要: Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2411.10845v1
- Date: Sat, 16 Nov 2024 17:31:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:23.772868
- Title: Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションにおける解釈可能なシステムエラーの自動発見と評価
- Authors: Jaisidh Singh, Sonam Singh, Amit Arvind Kale, Harsh K Gandhi,
- Abstract要約: 本稿では,セグメンテーションモデルにおける体系的誤りを発見するための新しい手法を提案する。
マルチモーダル・ファンデーション・モデルを用いてエラーを検索し、誤った性質とともに概念的リンクを用いてこれらのエラーの体系的性質を研究する。
我々の研究は、これまでセマンティックセグメンテーションで過小評価されてきたモデル分析と介入への道を開く。
- 参考スコア(独自算出の注目度): 0.5242869847419834
- License:
- Abstract: This paper presents a novel method for discovering systematic errors in segmentation models. For instance, a systematic error in the segmentation model can be a sufficiently large number of misclassifications from the model as a parking meter for a target class of pedestrians. With the rapid deployment of these models in critical applications such as autonomous driving, it is vital to detect and interpret these systematic errors. However, the key challenge is automatically discovering such failures on unlabelled data and forming interpretable semantic sub-groups for intervention. For this, we leverage multimodal foundation models to retrieve errors and use conceptual linkage along with erroneous nature to study the systematic nature of these errors. We demonstrate that such errors are present in SOTA segmentation models (UperNet ConvNeXt and UperNet Swin) trained on the Berkeley Deep Drive and benchmark the approach qualitatively and quantitatively, showing its effectiveness by discovering coherent systematic errors for these models. Our work opens up the avenue to model analysis and intervention that have so far been underexplored in semantic segmentation.
- Abstract(参考訳): 本稿では,セグメンテーションモデルにおける体系的誤りを発見するための新しい手法を提案する。
例えば、セグメンテーションモデルにおける体系的な誤りは、歩行者のターゲットクラスの駐車メーターとしてモデルから十分な数の誤分類を行うことができる。
自律運転のような重要なアプリケーションにこれらのモデルを迅速に配置することは、これらの体系的なエラーを検出し、解釈することが不可欠である。
しかし、鍵となる課題は、問題のないデータにそのような障害を自動的に発見し、介入のための解釈可能なセマンティックサブグループを形成することである。
そこで我々は,マルチモーダル・ファンデーション・モデルを用いて誤りを検索し,それらの誤りの体系的性質を研究するために,誤った性質とともに概念的リンクを利用する。
このような誤りは、バークレーディープドライブで訓練されたSOTAセグメンテーションモデル(UperNet ConvNeXtとUperNet Swin)に存在し、そのアプローチを質的かつ定量的にベンチマークし、それらのモデルに対して一貫性のある体系的エラーを発見することによってその効果を示す。
我々の研究は、これまでセマンティックセグメンテーションで過小評価されてきたモデル分析と介入への道を開く。
関連論文リスト
- Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
そこでは、異なる訓練パラダイムから学習特性を用いてモデルエラーを検出する。
我々は,制御的かつ自己管理的な方法で,点群における意味的および予測的動作ラベルを学習することにより,我々のアプローチを実証する。
大規模定性解析を行い、ライダー点雲にラベル付き異常を持つ最初のデータセットであるLidarCODAを提示する。
論文 参考訳(メタデータ) (2024-07-19T13:36:35Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
本稿では,機械学習モデルにおける根源的性能劣化に対する説明可能なAI(XAI)の新たな応用法を提案する。
単一機能の破損は、カスケード機能、ラベル、コンセプトドリフトを引き起こす可能性がある。
我々は、パーソナライズされた広告に使用されるモデルの信頼性を向上させるために、この手法をうまく応用した。
論文 参考訳(メタデータ) (2024-03-04T19:38:50Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
本稿では,学習されたタイムドオートマトンとシステムに関する公式知識グラフを組み合わせることで,CPPSのモデルベース異常検出を改善することを目的とする。
モデルと検出された異常の両方を知識グラフに記述し、モデルと検出された異常をより容易に解釈できるようにする。
論文 参考訳(メタデータ) (2023-08-25T15:25:57Z) - Distilling Model Failures as Directions in Latent Space [87.30726685335098]
本稿では,モデルの故障モードを自動的に抽出するスケーラブルな方法を提案する。
線形分類器を用いて一貫したエラーパターンを識別し、これらの障害モードを特徴空間内の方向として自然な表現を誘導する。
このフレームワークにより、トレーニングデータセット内の課題のあるサブポピュレーションを発見し、自動的にキャプションし、これらのサブポピュレーションにおけるモデルのパフォーマンスを改善することができることを示す。
論文 参考訳(メタデータ) (2022-06-29T16:35:24Z) - The Spotlight: A General Method for Discovering Systematic Errors in
Deep Learning Models [18.209010694469647]
本稿では,スポットライトと呼ばれる系統的誤りの発見手法を提案する。
同様の入力は、ニューラルネットワークの最終的な隠れ層に類似した表現を持つ傾向がある。
我々は、この表現空間上で「スポットライトを照らす」ことで、モデルが不十分な連続した領域を見つける。
論文 参考訳(メタデータ) (2021-07-01T21:58:00Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Defuse: Harnessing Unrestricted Adversarial Examples for Debugging
Models Beyond Test Accuracy [11.265020351747916]
Defuseは、テストデータ以外のモデルエラーを自動的に検出し、修正する手法である。
本稿では, 生成モデルを用いて, モデルによって誤分類された自然発生事例を探索する逆機械学習手法に着想を得たアルゴリズムを提案する。
Defuseはテストセットの一般化を維持しながら、微調整後のエラーを修正する。
論文 参考訳(メタデータ) (2021-02-11T18:08:42Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。