論文の概要: Complementary Learning for Real-World Model Failure Detection
- arxiv url: http://arxiv.org/abs/2407.14306v1
- Date: Fri, 19 Jul 2024 13:36:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:24:54.180787
- Title: Complementary Learning for Real-World Model Failure Detection
- Title(参考訳): 実世界モデル故障検出のための補完学習
- Authors: Daniel Bogdoll, Finn Sartoris, Vincent Geppert, Svetlana Pavlitska, J. Marius Zöllner,
- Abstract要約: そこでは、異なる訓練パラダイムから学習特性を用いてモデルエラーを検出する。
我々は,制御的かつ自己管理的な方法で,点群における意味的および予測的動作ラベルを学習することにより,我々のアプローチを実証する。
大規模定性解析を行い、ライダー点雲にラベル付き異常を持つ最初のデータセットであるLidarCODAを提示する。
- 参考スコア(独自算出の注目度): 15.779651238128562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world autonomous driving, deep learning models can experience performance degradation due to distributional shifts between the training data and the driving conditions encountered. As is typical in machine learning, it is difficult to acquire a large and potentially representative labeled test set to validate models in preparation for deployment in the wild. In this work, we introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors. We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner and detect and classify model discrepancies subsequently. We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds, for an extensive quantitative analysis.
- Abstract(参考訳): 実世界の自動運転において、ディープラーニングモデルは、トレーニングデータと遭遇した運転条件の間の分散シフトによる性能劣化を経験することができる。
機械学習の典型例であるように、大規模で潜在的に代表的なラベル付きテストセットを取得して、野に展開する準備としてモデルを検証することは困難である。
本研究では,異なる学習パラダイムから学習した特徴をモデルエラーの検出に用いる補完学習を紹介する。
本手法は, 点群における意味的および予測的動作ラベルを, 教師付きかつ自己監督的な方法で学習し, モデルの違いを検出し, 分類することによって実証する。
我々は大規模定性解析を行い、LidarCODAはライダー点雲にラベル付き異常を持つ最初のデータセットであり、広範囲な定量的解析を行う。
関連論文リスト
- Provable unlearning in topic modeling and downstream tasks [36.571324268874264]
アンラーニングの保証は、しばしば教師付き学習設定に限られる。
我々は、事前学習と微調整のパラダイムにおいて、初となるアンラーニングの理論的保証を提供する。
我々は、特定のタスクに微調整されたモデルから事前学習データを容易に解放できることを示し、ベースモデルを変更することなく、このデータを解放できることを示した。
論文 参考訳(メタデータ) (2024-11-19T16:04:31Z) - Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation [0.5242869847419834]
本稿では,セグメンテーションモデルにおける体系的誤りを発見するための新しい手法を提案する。
マルチモーダル・ファンデーション・モデルを用いてエラーを検索し、誤った性質とともに概念的リンクを用いてこれらのエラーの体系的性質を研究する。
我々の研究は、これまでセマンティックセグメンテーションで過小評価されてきたモデル分析と介入への道を開く。
論文 参考訳(メタデータ) (2024-11-16T17:31:37Z) - Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
本研究では,効率的な異常検出に向けて,人間のエージェントの移動行動のモデル化方法について検討する。
我々はGPSデータを時系列の静止点イベントとして使用し、それぞれに時間的特徴を特徴付ける。
数万のエージェントによる大規模専門家シミュレーションデータセットの実験は、我々のモデルの有効性を実証している。
論文 参考訳(メタデータ) (2024-10-02T06:57:08Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - An Empirical Study of Deep Learning Models for Vulnerability Detection [4.243592852049963]
我々は、広く使われている2つの脆弱性検出データセット上で、最先端の9つのディープラーニングモデルを調査し、再現した。
モデル能力,トレーニングデータ,モデル解釈について検討した。
我々の研究結果は、モデル結果の理解を深め、トレーニングデータ作成のガイダンスを提供し、モデルの堅牢性を向上させるのに役立つ。
論文 参考訳(メタデータ) (2022-12-15T19:49:34Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。