論文の概要: Watermarking Generative Categorical Data
- arxiv url: http://arxiv.org/abs/2411.10898v1
- Date: Sat, 16 Nov 2024 21:57:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:07.183722
- Title: Watermarking Generative Categorical Data
- Title(参考訳): 透かし生成カテゴリデータ
- Authors: Bochao Gu, Hengzhi He, Guang Cheng,
- Abstract要約: 本手法は,データ分布を2つの成分に分割し,一方の分布を他方との決定論的関係に基づいて修正することにより秘密信号を埋め込む。
透かしを検証するために挿入逆アルゴリズムを導入し、逆復号データと元の分布との間の全変動距離を計測してその存在を検出する。
- 参考スコア(独自算出の注目度): 9.087950471621653
- License:
- Abstract: In this paper, we propose a novel statistical framework for watermarking generative categorical data. Our method systematically embeds pre-agreed secret signals by splitting the data distribution into two components and modifying one distribution based on a deterministic relationship with the other, ensuring the watermark is embedded at the distribution-level. To verify the watermark, we introduce an insertion inverse algorithm and detect its presence by measuring the total variation distance between the inverse-decoded data and the original distribution. Unlike previous categorical watermarking methods, which primarily focus on embedding watermarks into a given dataset, our approach operates at the distribution-level, allowing for verification from a statistical distributional perspective. This makes it particularly well-suited for the modern paradigm of synthetic data generation, where the underlying data distribution, rather than specific data points, is of primary importance. The effectiveness of our method is demonstrated through both theoretical analysis and empirical validation.
- Abstract(参考訳): 本稿では,生成的分類データを透かし出すための新しい統計フレームワークを提案する。
提案手法は,データ分布を2つの成分に分割し,一方の分布を他方との決定論的関係に基づいて修正することにより,予め入力した秘密信号を系統的に埋め込み,その分布レベルに透かしを埋め込む。
透かしを検証するために挿入逆アルゴリズムを導入し、逆復号データと元の分布との間の全変動距離を計測してその存在を検出する。
従来の分類的透かし法とは違い,本手法は統計的分布の観点からの検証を可能にするため,各データセットに透かしを埋め込むことに重点を置いている。
これは、特定のデータポイントではなく、基礎となるデータ分散が重要となる、現代の合成データ生成のパラダイムに特に適している。
本手法の有効性は,理論的解析と実証的検証の両方によって実証される。
関連論文リスト
- Watermarking Generative Tabular Data [39.31042783480766]
提案した透かしは,データ忠実性を忠実に保ちながら,有効に検出できることを理論的に示す。
また,付加音に対する強靭性も示している。
論文 参考訳(メタデータ) (2024-05-22T21:52:12Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Dataset Distillation via the Wasserstein Metric [35.32856617593164]
最適な輸送理論に基づく計量であるワッサーシュタイン距離を導入し, データセット蒸留における分布整合性を高める。
提案手法は,高解像度データセットにまたがって,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-30T13:15:28Z) - Semantic Equivariant Mixup [54.734054770032934]
Mixupは、トレーニング分布を拡張し、ニューラルネットワークを正規化する、確立されたデータ拡張テクニックである。
以前のミックスアップの変種はラベル関連の情報に過度に焦点をあてる傾向がある。
入力中のよりリッチな意味情報を保存するための意味的同変混合(sem)を提案する。
論文 参考訳(メタデータ) (2023-08-12T03:05:53Z) - Restricted Generative Projection for One-Class Classification and
Anomaly Detection [31.173234437065464]
トレーニングデータの未知分布(正規分布)を既知の目標分布に変換するためのマッピングを学習する。
シンプルさは、配布から簡単にサンプルを採取できるようにすることです。
コンパクト性は、正規データと異常データとの判定境界が明確であることを保証することである。
その情報性は、変換されたデータが元のデータの重要な情報を確実に保持することである。
論文 参考訳(メタデータ) (2023-07-09T04:59:10Z) - Probabilistic Matching of Real and Generated Data Statistics in Generative Adversarial Networks [0.6906005491572401]
本稿では,あるデータ統計量の分布が実データの分布と一致することを確実にする手法を提案する。
提案手法を合成データセットと実世界のデータセットで評価し,提案手法の性能向上を実証した。
論文 参考訳(メタデータ) (2023-06-19T14:03:27Z) - Did You Train on My Dataset? Towards Public Dataset Protection with
Clean-Label Backdoor Watermarking [54.40184736491652]
本稿では,公開データの保護のための一般的な枠組みとして機能するバックドアベースの透かし手法を提案する。
データセットに少数の透かしサンプルを挿入することにより、我々のアプローチは、ディフェンダーが設定した秘密関数を暗黙的に学習することを可能にする。
この隠れた機能は、データセットを違法に使用するサードパーティモデルを追跡するための透かしとして使用できる。
論文 参考訳(メタデータ) (2023-03-20T21:54:30Z) - Self-Conditioned Generative Adversarial Networks for Image Editing [61.50205580051405]
Generative Adversarial Networks (GAN) はバイアスの影響を受けやすい。
我々は、このバイアスが公平性だけでなく、分布のコアから逸脱する際の潜在トラバース編集手法の崩壊に重要な役割を果たしていると論じる。
論文 参考訳(メタデータ) (2022-02-08T18:08:24Z) - Towards an efficient framework for Data Extraction from Chart Images [27.114170963444074]
データマイニングシステムにおいて,データ抽出段階において最先端のコンピュータビジョン技術を採用する。
堅牢な点検出器を構築するには、特徴融合モジュールを備えた完全な畳み込みネットワークを採用する。
データ変換では,検出した要素を意味値でデータに変換する。
論文 参考訳(メタデータ) (2021-05-05T13:18:53Z) - Source-free Domain Adaptation via Distributional Alignment by Matching
Batch Normalization Statistics [85.75352990739154]
ソースフリー設定のための新しいドメイン適応手法を提案する。
未観測のソースデータの分布を近似するために,事前学習モデルに格納されたバッチ正規化統計を用いた。
本手法は最先端のドメイン適応手法で競合性能を実現する。
論文 参考訳(メタデータ) (2021-01-19T14:22:33Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。