論文の概要: Attention-based U-Net Method for Autonomous Lane Detection
- arxiv url: http://arxiv.org/abs/2411.10902v1
- Date: Sat, 16 Nov 2024 22:20:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:21.421649
- Title: Attention-based U-Net Method for Autonomous Lane Detection
- Title(参考訳): 注意に基づく自律車線検出のためのU-Net法
- Authors: Mohammadhamed Tangestanizadeh, Mohammad Dehghani Tezerjani, Saba Yousefian Jazi,
- Abstract要約: 本研究では,ディープラーニングに基づく2つのレーン認識手法を提案する。
最初の方法はFPN(Feature Pyramid Network)モデルを用いており、道路車線検出の精度は87.59%である。
注意層をU-Netモデルに組み込んだ第2の手法はセマンティックセグメンテーションタスクの性能を大幅に向上させる。
- 参考スコア(独自算出の注目度): 0.5461938536945723
- License:
- Abstract: Lane detection involves identifying lanes on the road and accurately determining their location and shape. This is a crucial technique for modern assisted and autonomous driving systems. However, several unique properties of lanes pose challenges for detection methods. The lack of distinctive features can cause lane detection algorithms to be confused by other objects with similar appearances. Additionally, the varying number of lanes and the diversity in lane line patterns, such as solid, broken, single, double, merging, and splitting lines, further complicate the task. To address these challenges, Deep Learning (DL) approaches can be employed in various ways. Merging DL models with an attention mechanism has recently surfaced as a new approach. In this context, two deep learning-based lane recognition methods are proposed in this study. The first method employs the Feature Pyramid Network (FPN) model, delivering an impressive 87.59% accuracy in detecting road lanes. The second method, which incorporates attention layers into the U-Net model, significantly boosts the performance of semantic segmentation tasks. The advanced model, achieving an extraordinary 98.98% accuracy and far surpassing the basic U-Net model, clearly showcases its superiority over existing methods in a comparative analysis. The groundbreaking findings of this research pave the way for the development of more effective and reliable road lane detection methods, significantly advancing the capabilities of modern assisted and autonomous driving systems.
- Abstract(参考訳): 車線検出は、道路上の車線を特定し、その位置と形状を正確に決定する。
これは、現代のアシストおよび自律運転システムにとって重要な技術である。
しかし、レーンのいくつかの特異な性質は、検出方法の課題を提起する。
特徴の欠如により、車線検出アルゴリズムは類似した外観を持つ他の物体と混同される可能性がある。
さらに、車線数や、ソリッド、壊れた、シングル、ダブル、マージ、分割ラインなどの車線パターンの多様性により、作業はさらに複雑になる。
これらの課題に対処するために、Deep Learning (DL)アプローチは様々な方法で適用することができる。
DLモデルとアテンションメカニズムの融合は、最近新しいアプローチとして浮上した。
本研究では,2つの深層学習に基づく車線認識手法を提案する。
最初の方法はFPN(Feature Pyramid Network)モデルを用いており、道路車線検出の精度は87.59%である。
注意層をU-Netモデルに組み込んだ第2の手法はセマンティックセグメンテーションタスクの性能を大幅に向上させる。
高度なモデルは98.98%の精度を達成し、基本的なU-Netモデルよりもはるかに上回っており、比較分析において既存の手法よりも優れていることが明らかに示されている。
この研究の画期的な発見は、より効果的で信頼性の高い道路車線検出方法の開発への道を開き、近代的な補助運転システムと自律運転システムの能力を大幅に向上させた。
関連論文リスト
- Cross Dataset Analysis and Network Architecture Repair for Autonomous
Car Lane Detection [5.428120316375907]
自動運転車の車線検出アプリケーションにおいて,クロスデータセット解析とネットワークアーキテクチャの修復を行った。
ERFCondLaneNetは、複雑なトポロジを持つ車線検出の難しさを解決するために車線識別フレームワークとして使用されるCondlaneNetの拡張である。
論文 参考訳(メタデータ) (2024-09-10T20:27:49Z) - LOID: Lane Occlusion Inpainting and Detection for Enhanced Autonomous Driving Systems [0.0]
本研究では,難易度の高い環境下での車線検出を向上するための2つの革新的なアプローチを提案する。
最初のアプローチであるAug-Segmentは、CULanesのトレーニングデータセットを増強することで、従来のレーン検出モデルを改善する。
第2のアプローチであるLOID Lane Occlusion Inpainting and Detectionは、塗装モデルを用いて、閉鎖された地域の道路環境を再構築する。
論文 参考訳(メタデータ) (2024-08-17T06:55:40Z) - ENet-21: An Optimized light CNN Structure for Lane Detection [1.4542411354617986]
本研究では,車線検出問題に対する最適構造について検討する。
現代の車両の運転支援機能には有望なソリューションを提供する。
TuSimpleデータセットの実験は提案手法の有効性を支持する。
論文 参考訳(メタデータ) (2024-03-28T19:07:26Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
曲線に基づく車線表現は多くの車線検出法で一般的な手法である。
本稿では,曲線モデルと地上高さ回帰という2つの部分に分解することで,車線検出タスクに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T11:24:14Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
本稿では,タスク固有のプロンプトを通じて視覚的見本を提示する,効果的なマルチタスクフレームワークVE-Promptを提案する。
具体的には、境界ボックスと色に基づくマーカーに基づいて視覚的な例を生成し、ターゲットカテゴリの正確な視覚的外観を提供する。
我々は変圧器をベースとしたエンコーダと畳み込み層を橋渡しし、自律運転における効率的かつ正確な統合認識を実現する。
論文 参考訳(メタデータ) (2023-03-03T08:54:06Z) - RCLane: Relay Chain Prediction for Lane Detection [76.62424079494285]
本稿では,リレーチェーン予測に基づく車線検出手法を提案する。
当社の戦略では,TuSimple,CULane,CurveLanes,LLAMASの4つの主要なベンチマーク上で,最先端の新たなベンチマークを確立することが可能です。
論文 参考訳(メタデータ) (2022-07-19T16:48:39Z) - RONELDv2: A faster, improved lane tracking method [1.3965477771846408]
車線検出は、自動運転車や車線出発警報システムにおいて、制御システムの不可欠な部分である。
本稿では,改良された軽量車線検出手法 RONELDv2を提案する。
提案した改良モデルを用いた実験では、異なるデータセットとディープラーニングモデル間でレーン検出精度が一貫した向上を示した。
論文 参考訳(メタデータ) (2022-02-26T13:12:09Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - Multi-lane Detection Using Instance Segmentation and Attentive Voting [0.0]
本稿では,精度と速度の両面で技術手法の状態を上回り,マルチレーン検出のための新しい手法を提案する。
54.53 fps(平均)で走行する車線分割精度99.87%を得ることができる。
論文 参考訳(メタデータ) (2020-01-01T16:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。