論文の概要: LLM-assisted Physical Invariant Extraction for Cyber-Physical Systems Anomaly Detection
- arxiv url: http://arxiv.org/abs/2411.10918v1
- Date: Sun, 17 Nov 2024 00:09:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:14.799461
- Title: LLM-assisted Physical Invariant Extraction for Cyber-Physical Systems Anomaly Detection
- Title(参考訳): サイバー物理システム異常検出のためのLCM支援物理不変抽出
- Authors: Danial Abshari, Chenglong Fu, Meera Sridhar,
- Abstract要約: サイバー物理システム(CPS)は、破滅的な影響のあるサイバー攻撃に対して脆弱である。
CPS設計文書は、しばしば意味的にリッチな物理手順の記述を含んでいる。
異常検出のためのCPSテストベッドから物理不変量を抽出する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.276945627589248
- License:
- Abstract: Modern industrial infrastructures rely heavily on Cyber-Physical Systems (CPS), but these are vulnerable to cyber-attacks with potentially catastrophic effects. To reduce these risks, anomaly detection methods based on physical invariants have been developed. However, these methods often require domain-specific expertise to manually define invariants, making them costly and difficult to scale. To address this limitation, we propose a novel approach to extract physical invariants from CPS testbeds for anomaly detection. Our insight is that CPS design documentation often contains semantically rich descriptions of physical procedures, which can profile inter-correlated dynamics among system components. Leveraging the built-in physics and engineering knowledge of recent generative AI models, we aim to automate this traditionally manual process, improving scalability and reducing costs. This work focuses on designing and optimizing a Retrieval-Augmented-Generation (RAG) workflow with a customized prompting system tailored for CPS documentation, enabling accurate extraction of semantic information and inference of physical invariants from complex, multimodal content. Then, rather than directly applying the inferred invariants for anomaly detection, we introduce an innovative statistics-based learning approach that integrates these invariants into the training dataset. This method addresses limitations such as hallucination and concept drift, enhancing the reliability of the model. We evaluate our approach on real-world public CPS security dataset which contains 86 data points and 58 attacking cases. The results show that our approach achieves a high precision of 0.923, accurately detecting anomalies while minimizing false alarms.
- Abstract(参考訳): 現代の産業インフラはサイバー物理システム(CPS)に大きく依存しているが、それらは破滅的な影響のあるサイバー攻撃に弱い。
これらのリスクを軽減するため,物理不変量に基づく異常検出手法が開発されている。
しかしながら、これらのメソッドは、手動で不変量を定義するためにドメイン固有の専門知識を必要とすることが多く、コストがかかり、スケールが難しい。
この制限に対処するため,異常検出のためのCPSテストベッドから物理不変量を抽出する手法を提案する。
我々の洞察では、CPS設計文書は、しばしば、システムコンポーネント間の相関関係のダイナミクスをプロファイルできる、物理的手順のセマンティックにリッチな記述を含んでいる。
最近の生成AIモデルの内蔵物理とエンジニアリング知識を活用して、この従来的な手作業プロセスの自動化、スケーラビリティの向上、コスト削減を目標としています。
本研究は,CPSドキュメンテーション用にカスタマイズされたプロンプトシステムにより,複雑なマルチモーダルコンテンツから意味情報の正確な抽出と物理不変量の推論を可能にすることを目的としたRAG(Retrieval-Augmented-Generation)ワークフローの設計と最適化に重点を置いている。
そして,予測不変量を直接異常検出に適用するのではなく,これらの不変量をトレーニングデータセットに統合する,革新的な統計に基づく学習手法を導入する。
この方法は幻覚やコンセプトドリフトといった制約に対処し、モデルの信頼性を高める。
我々は,86個のデータポイントと58個の攻撃ケースを含む実世界の公開CPSセキュリティデータセットに対するアプローチを評価した。
その結果, 誤報を最小化しつつ, 異常を正確に検出し, 精度0.923の精度が得られた。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Few-shot Detection of Anomalies in Industrial Cyber-Physical System via
Prototypical Network and Contrastive Learning [5.9990208840809345]
本稿では,プロトタイプネットワークとコントラスト学習に基づく数ショットの異常検出モデルを提案する。
本モデルでは,異常信号を特定するために,F1スコアを大幅に改善し,誤警報率(FAR)を低減できることを示す。
論文 参考訳(メタデータ) (2023-02-21T11:09:36Z) - Semi-supervised detection of structural damage using Variational
Autoencoder and a One-Class Support Vector Machine [0.0]
本稿では,構造異常を検出するためのデータ駆動型手法を用いた半教師付き手法を提案する。
IASC-ASCE 構造健康モニタリングタスクグループによって9つの損傷シナリオで試験されたスケールスチール構造に適用した。
論文 参考訳(メタデータ) (2022-10-11T07:39:08Z) - Design Methodology for Deep Out-of-Distribution Detectors in Real-Time
Cyber-Physical Systems [5.233831361879669]
アウト・オブ・ディストリビューション(OOD)検出器はMLモデルと並行して動作し、フラグ入力は望ましくない結果をもたらす可能性がある。
本研究は,組込みアプリケーションの精度および応答時間要求を満たすため,深部OOD検出器をチューニングするための設計手法を提案する。
論文 参考訳(メタデータ) (2022-07-29T14:06:27Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
ICSネットワークにおけるIDSによる不正な警告は、経済的および運用上の重大な損害をもたらす可能性がある。
本研究は,CPS電力系統における誤警報の事前分布を伴わずに不確実性に対処し,誤警報を低減する手法を提案する。
論文 参考訳(メタデータ) (2021-11-20T00:05:39Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Deep Neural Networks (DNN) を中継するセキュリティに敏感なアプリケーションは、Adversarial Examples (AE) を生成するために作られた小さな摂動に弱い。
本稿では,マルチタスク学習環境における選択的予測,モデルレイヤの出力処理,知識伝達概念を用いた教師なし検出機構を提案する。
実験の結果,提案手法は,ホワイトボックスシナリオにおけるテスト攻撃に対する最先端手法と同等の結果を得られ,ブラックボックスとグレーボックスシナリオの精度が向上した。
論文 参考訳(メタデータ) (2021-03-09T11:06:15Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。