Understanding Multimodal LLMs: the Mechanistic Interpretability of Llava in Visual Question Answering
- URL: http://arxiv.org/abs/2411.10950v1
- Date: Sun, 17 Nov 2024 03:32:50 GMT
- Title: Understanding Multimodal LLMs: the Mechanistic Interpretability of Llava in Visual Question Answering
- Authors: Zeping Yu, Sophia Ananiadou,
- Abstract summary: We develop an interpretability tool to help users and researchers identify important visual locations for final predictions.
Our method demonstrates faster and more effective results compared to existing interpretability approaches.
- Score: 19.472889262384818
- License:
- Abstract: Understanding the mechanisms behind Large Language Models (LLMs) is crucial for designing improved models and strategies. While recent studies have yielded valuable insights into the mechanisms of textual LLMs, the mechanisms of Multi-modal Large Language Models (MLLMs) remain underexplored. In this paper, we apply mechanistic interpretability methods to analyze the visual question answering (VQA) mechanisms in the first MLLM, Llava. We compare the mechanisms between VQA and textual QA (TQA) in color answering tasks and find that: a) VQA exhibits a mechanism similar to the in-context learning mechanism observed in TQA; b) the visual features exhibit significant interpretability when projecting the visual embeddings into the embedding space; and c) Llava enhances the existing capabilities of the corresponding textual LLM Vicuna during visual instruction tuning. Based on these findings, we develop an interpretability tool to help users and researchers identify important visual locations for final predictions, aiding in the understanding of visual hallucination. Our method demonstrates faster and more effective results compared to existing interpretability approaches. Code: \url{https://github.com/zepingyu0512/llava-mechanism}
Related papers
- Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning.
We propose Complex Visual Reasoning Large Language Models (CVR-LLM)
Our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop.
We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs' contextual understanding and reasoning.
arXiv Detail & Related papers (2024-09-21T02:10:19Z) - Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities.
Visual prompting has emerged for more fine-grained and free-form visual instructions.
This paper focuses on visual prompting, prompt generation, compositional reasoning, and prompt learning.
arXiv Detail & Related papers (2024-09-05T08:47:34Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-Former is a lightweight transformer module designed to exploit the complementary strengths of CL and MIM.
X-Former first bootstraps vision-language representation learning and multimodal-to-multimodal generative learning from two frozen vision encoders.
It further bootstraps vision-to-language generative learning from a frozen LLM to ensure visual features from X-Former can be interpreted by the LLM.
arXiv Detail & Related papers (2024-07-18T18:39:54Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - Image-of-Thought Prompting for Visual Reasoning Refinement in Multimodal Large Language Models [14.765057045747753]
Chain-of-Thought (CoT) and related rationale-based works have significantly improved the performance of Large Language Models (LLMs) in complex reasoning tasks.
We propose the Image-of-Thought (IoT) prompting method, which helps MLLMs to extract visual rationales step-by-step.
IoT prompting has improved zero-shot visual reasoning performance across various visual understanding tasks in different MLLMs.
arXiv Detail & Related papers (2024-05-22T17:56:51Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Towards Uncovering How Large Language Model Works: An Explainability Perspective [38.07611356855978]
Large language models (LLMs) have led to breakthroughs in language tasks, yet the internal mechanisms that enable their remarkable generalization and reasoning abilities remain opaque.
This paper aims to uncover the mechanisms underlying LLM functionality through the lens of explainability.
arXiv Detail & Related papers (2024-02-16T13:46:06Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
Large language models (LLMs) have shown remarkable capabilities in various natural language understanding tasks.
We propose EASE, an Explanation-Aware Soft Ensemble framework to empower in-context learning with LLMs.
arXiv Detail & Related papers (2023-11-13T06:13:38Z) - Towards Vision-Language Mechanistic Interpretability: A Causal Tracing
Tool for BLIP [27.51318030253248]
We adapt a unimodal causal tracing tool to BLIP to enable the study of the neural mechanisms underlying image-conditioned text generation.
We release our BLIP causal tracing tool as open source to enable further experimentation in vision-language mechanistic interpretability.
arXiv Detail & Related papers (2023-08-27T18:46:47Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance.
We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process.
Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
arXiv Detail & Related papers (2021-08-26T04:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.