IMPaCT GNN: Imposing invariance with Message Passing in Chronological split Temporal Graphs
- URL: http://arxiv.org/abs/2411.10957v1
- Date: Sun, 17 Nov 2024 04:23:25 GMT
- Title: IMPaCT GNN: Imposing invariance with Message Passing in Chronological split Temporal Graphs
- Authors: Sejun Park, Joo Young Park, Hyunwoo Park,
- Abstract summary: This paper addresses domain adaptation challenges in graph data resulting from chronological splits.
We propose IMPaCT, a method that imposes invariant properties based on realistic assumptions derived from temporal graph structures.
We show that IMPaCT achieves a 3.8% performance improvement over current SOTA method on the ogbn-mag graph dataset.
- Score: 8.861995276194435
- License:
- Abstract: This paper addresses domain adaptation challenges in graph data resulting from chronological splits. In a transductive graph learning setting, where each node is associated with a timestamp, we focus on the task of Semi-Supervised Node Classification (SSNC), aiming to classify recent nodes using labels of past nodes. Temporal dependencies in node connections create domain shifts, causing significant performance degradation when applying models trained on historical data into recent data. Given the practical relevance of this scenario, addressing domain adaptation in chronological split data is crucial, yet underexplored. We propose Imposing invariance with Message Passing in Chronological split Temporal Graphs (IMPaCT), a method that imposes invariant properties based on realistic assumptions derived from temporal graph structures. Unlike traditional domain adaptation approaches which rely on unverifiable assumptions, IMPaCT explicitly accounts for the characteristics of chronological splits. The IMPaCT is further supported by rigorous mathematical analysis, including a derivation of an upper bound of the generalization error. Experimentally, IMPaCT achieves a 3.8% performance improvement over current SOTA method on the ogbn-mag graph dataset. Additionally, we introduce the Temporal Stochastic Block Model (TSBM), which replicates temporal graphs under varying conditions, demonstrating the applicability of our methods to general spatial GNNs.
Related papers
- Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs [0.6562256987706128]
HYPA-DBGNN is a novel two-step approach that combines the inference of anomalous sequential patterns in time series data on graphs.
Our method leverages hypergeometric graph ensembles to identify anomalous edges within both first- and higher-order De Bruijn graphs.
Our work is the first to introduce statistically informed GNNs that leverage temporal and causal sequence anomalies.
arXiv Detail & Related papers (2024-06-24T11:41:12Z) - Gaussian Embedding of Temporal Networks [12.09704836128003]
TGNE (textbfTemporal textbfGaussian textbfNetwork textbfEmbedding) bridges statistical analysis of networks via Latent Space Models (LSM)citeHoff2002 and temporal graph machine learning.
We evaluate TGNE's effectiveness in reconstructing the original graph and modelling uncertainty.
arXiv Detail & Related papers (2024-05-27T15:07:57Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
We design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures.
Experiment results demonstrate the effectiveness of our model over baselines.
arXiv Detail & Related papers (2023-05-29T21:11:34Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Multivariate Time Series Classification with Hierarchical Variational
Graph Pooling [23.66868187446734]
Existing deep learning-based MTSC techniques are primarily concerned with the temporal dependency of single time series.
We propose a novel graph pooling-based framework MTPool to obtain the expressive global representation of MTS.
Experiments on ten benchmark datasets exhibit MTPool outperforms state-of-the-art strategies in the MTSC task.
arXiv Detail & Related papers (2020-10-12T12:36:47Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.