Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network
- URL: http://arxiv.org/abs/2411.11029v1
- Date: Sun, 17 Nov 2024 10:19:54 GMT
- Title: Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network
- Authors: Yin-Yin Bao, Er-Chao Li, Hong-Qiang Yang, Bin-Bin Jia,
- Abstract summary: This study proposes a novel method combining a self-encoder-based data augmentation technique with a convolutional neural network (CNN)
The proposed method achieves a classification accuracy of 98.56%, surpassing Random Forest, SVM, and Logistic Regression by 19%, 21%, and 27%, respectively.
- Score: 4.8748194765816955
- License:
- Abstract: In semiconductor manufacturing, wafer defect maps (WDMs) play a crucial role in diagnosing issues and enhancing process yields by revealing critical defect patterns. However, accurately categorizing WDM defects presents significant challenges due to noisy data, unbalanced defect classes, and the complexity of failure modes. To address these challenges, this study proposes a novel method combining a self-encoder-based data augmentation technique with a convolutional neural network (CNN). By introducing noise into the latent space, the self-encoder enhances data diversity and mitigates class imbalance, thereby improving the model's generalization capabilities. The augmented dataset is subsequently used to train the CNN, enabling it to deliver precise classification of both common and rare defect patterns. Experimental results on the WM-811K dataset demonstrate that the proposed method achieves a classification accuracy of 98.56%, surpassing Random Forest, SVM, and Logistic Regression by 19%, 21%, and 27%, respectively. These findings highlight the robustness and effectiveness of the proposed approach, offering a reliable solution for wafer defect detection and classification.
Related papers
- Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - An AI-enabled Bias-Free Respiratory Disease Diagnosis Model using Cough
Audio: A Case Study for COVID-19 [1.1146119513912156]
We propose the Bias Free Network (RBFNet) to mitigate the impact of confounders in the training data distribution.
RBFNet ensures accurate and unbiased RD diagnosis features, emphasizing its relevance by incorporating a COVID19 dataset.
An additional bias predictor is incorporated in the classification scheme to formulate a conditional Generative Adrial Network (cGAN)
arXiv Detail & Related papers (2024-01-04T13:09:45Z) - Generative Model-Driven Synthetic Training Image Generation: An Approach
to Cognition in Rail Defect Detection [12.584718477246382]
This study proposes a VAE-based synthetic image generation technique for rail defects.
It is applied to create a synthetic dataset for the Canadian Pacific Railway.
500 synthetic samples are generated with a minimal reconstruction loss of 0.021.
arXiv Detail & Related papers (2023-12-31T04:34:58Z) - A novel approach for wafer defect pattern classification based on
topological data analysis [0.0]
In semiconductor manufacturing, wafer map defect pattern provides critical information for facility maintenance and yield management.
We propose a novel way to represent the shape of the defect pattern as a finite-dimensional vector, which will be used as an input for a neural network algorithm for classification.
arXiv Detail & Related papers (2022-09-19T11:54:13Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
This paper proposes a new knowledge distillation network, called Dual Knowledge Align Network (DKAN)
The proposed DKAN method follows a pretraining-finetuning transfer learning paradigm and a knowledge distillation framework is designed for fine-tuning.
Experiments have been conducted on the incremental Few-shot NEU-DET dataset and results show that DKAN outperforms other methods on various few-shot scenes.
arXiv Detail & Related papers (2022-09-01T15:08:44Z) - Effective Class-Imbalance learning based on SMOTE and Convolutional
Neural Networks [0.1074267520911262]
Imbalanced Data (ID) is a problem that deters Machine Learning (ML) models for achieving satisfactory results.
In this paper, we investigate the effectiveness of methods based on Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs)
In order to achieve reliable results, we conducted our experiments 100 times with randomly shuffled data distributions.
arXiv Detail & Related papers (2022-09-01T07:42:16Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.