論文の概要: StableV2V: Stablizing Shape Consistency in Video-to-Video Editing
- arxiv url: http://arxiv.org/abs/2411.11045v1
- Date: Sun, 17 Nov 2024 11:48:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:14.585972
- Title: StableV2V: Stablizing Shape Consistency in Video-to-Video Editing
- Title(参考訳): StableV2V:ビデオとビデオの編集における形状整合性の安定化
- Authors: Chang Liu, Rui Li, Kaidong Zhang, Yunwei Lan, Dong Liu,
- Abstract要約: 本稿では,形状に一貫性のあるビデオ編集手法であるStableV2Vについて述べる。
提案手法は,編集パイプライン全体を複数のシーケンシャルな手順に分解し,最初のビデオフレームを編集し,配信された動作とユーザプロンプトのアライメントを確立し,最終的にそのアライメントに基づいて編集内容を他のすべてのフレームに伝達する。
実験結果と解析結果から,既存の最先端研究と比較して,提案手法の性能,視覚的整合性,推論効率が向上していることが示唆された。
- 参考スコア(独自算出の注目度): 11.09708780767668
- License:
- Abstract: Recent advancements of generative AI have significantly promoted content creation and editing, where prevailing studies further extend this exciting progress to video editing. In doing so, these studies mainly transfer the inherent motion patterns from the source videos to the edited ones, where results with inferior consistency to user prompts are often observed, due to the lack of particular alignments between the delivered motions and edited contents. To address this limitation, we present a shape-consistent video editing method, namely StableV2V, in this paper. Our method decomposes the entire editing pipeline into several sequential procedures, where it edits the first video frame, then establishes an alignment between the delivered motions and user prompts, and eventually propagates the edited contents to all other frames based on such alignment. Furthermore, we curate a testing benchmark, namely DAVIS-Edit, for a comprehensive evaluation of video editing, considering various types of prompts and difficulties. Experimental results and analyses illustrate the outperforming performance, visual consistency, and inference efficiency of our method compared to existing state-of-the-art studies.
- Abstract(参考訳): 生成AIの最近の進歩は、コンテンツ作成と編集を著しく促進し、より一般的な研究は、このエキサイティングな進歩をビデオ編集にまで広げている。
このようにして、これらの研究は主にソースビデオから編集された動画に固有の動きパターンを移し、そこでは、配信された動画と編集されたコンテンツの間に特定のアライメントが欠如しているため、ユーザプロンプトに劣った結果がしばしば観察される。
本稿では,この制限に対処するため,形状に一貫性のあるビデオ編集手法であるStableV2Vを提案する。
提案手法は,編集パイプライン全体を複数のシーケンシャルな手順に分解し,最初のビデオフレームを編集し,配信された動作とユーザプロンプトのアライメントを確立し,最終的にそのアライメントに基づいて編集内容を他のすべてのフレームに伝達する。
さらに、様々な種類のプロンプトや難易度を考慮して、ビデオ編集の総合的な評価のために、DAVIS-Editというテストベンチマークをキュレートする。
実験結果と解析結果から,既存の最先端研究と比較して,提案手法の性能,視覚的整合性,推論効率が向上していることが示唆された。
関連論文リスト
- VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing [91.60658973688996]
グローバルおよびローカルなビデオ編集のためのVIA統合ビデオ適応フレームワークについて紹介する。
我々は,VIAが一貫した長いビデオ編集を数分で達成できることを示し,高度なビデオ編集タスクの可能性を秘めている。
論文 参考訳(メタデータ) (2024-06-18T17:51:37Z) - Zero-Shot Video Editing through Adaptive Sliding Score Distillation [51.57440923362033]
本研究は,オリジナルビデオコンテンツの直接操作を容易にする,ビデオベースのスコア蒸留の新たなパラダイムを提案する。
本稿では,グローバルとローカルの両方の動画ガイダンスを取り入れた適応スライディングスコア蒸留方式を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:33:59Z) - I2VEdit: First-Frame-Guided Video Editing via Image-to-Video Diffusion Models [18.36472998650704]
本稿では,1フレームからビデオ全体への編集を事前学習した画像対ビデオモデルを用いてプロパガンダすることで,画像編集ツールをビデオに適用可能にする,新しい汎用的ソリューションを提案する。
I2VEditと呼ばれる本手法は,編集範囲に応じて映像の視覚的・運動的整合性を適応的に保持する。
論文 参考訳(メタデータ) (2024-05-26T11:47:40Z) - ReVideo: Remake a Video with Motion and Content Control [67.5923127902463]
本稿では,コンテンツと動画の両方の仕様により,特定の領域における正確な映像編集を可能にするビデオリメイク(VideoRe)を提案する。
VideoReは、コンテンツとモーションコントロールの結合とトレーニングの不均衡を含む新しいタスクに対処する。
また,本手法は,特定のトレーニングを変更することなく,その柔軟性と堅牢性を示すことなく,これらのアプリケーションをマルチエリア編集にシームレスに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T17:46:08Z) - AnyV2V: A Tuning-Free Framework For Any Video-to-Video Editing Tasks [41.640692114423544]
我々はビデオ編集を簡単にするための新しいチューニング不要のパラダイムであるAnyV2Vを紹介する。
AnyV2Vは、既存の画像編集ツールを利用して、幅広いビデオ編集タスクをサポートすることができる。
評価の結果,AnyV2Vは他のベースライン法に匹敵するCLIPスコアが得られた。
論文 参考訳(メタデータ) (2024-03-21T15:15:00Z) - FastVideoEdit: Leveraging Consistency Models for Efficient Text-to-Video
Editing [10.011515580084243]
既存のビデオ編集における画像生成モデルへのアプローチは、ワンショットの微調整、追加条件抽出、DDIMの逆変換といった時間を要する。
我々は、一貫性モデル(CM)にインスパイアされた効率的なゼロショットビデオ編集手法であるFastVideoEditを提案する。
本手法は,特別な分散スケジュールを用いて,ソース映像からターゲット映像への直接マッピングを可能にする。
論文 参考訳(メタデータ) (2024-03-10T17:12:01Z) - FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video
editing [65.60744699017202]
拡散モデルのU-Netにおける注目モジュールに光フローを導入し,テキスト対ビデオ編集の不整合問題に対処する。
提案手法であるFLATTENでは,異なるフレームにまたがる同一フローパス上のパッチを適用して,アテンションモジュール内の相互にアテンションする。
既存のテキスト・ビデオ編集ベンチマークの結果から,提案手法が新たな最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2023-10-09T17:59:53Z) - Ground-A-Video: Zero-shot Grounded Video Editing using Text-to-image
Diffusion Models [65.268245109828]
Ground-A-Videoは、マルチ属性ビデオ編集のためのビデオからビデオへの変換フレームワークである。
トレーニング不要な方法で、時間的に一貫した入力ビデオの編集を可能にする。
実験と応用により、Ground-A-Videoのゼロショットキャパシティは、編集精度とフレームの整合性の観点から、他のベースライン手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-02T11:28:37Z) - InstructVid2Vid: Controllable Video Editing with Natural Language Instructions [97.17047888215284]
InstructVid2Vidは、人間の言語命令でガイドされたビデオ編集のためのエンドツーエンドの拡散ベースの方法論である。
我々のアプローチは、自然言語ディレクティブによって案内される映像操作を強化し、サンプルごとの微調整や逆変換の必要性を排除します。
論文 参考訳(メタデータ) (2023-05-21T03:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。