Connection between gravity and quantum mechanics: an algebraic approach to cosmological issues
- URL: http://arxiv.org/abs/2411.11047v1
- Date: Sun, 17 Nov 2024 11:55:16 GMT
- Title: Connection between gravity and quantum mechanics: an algebraic approach to cosmological issues
- Authors: Victor Borsevici, Samit Ganguly, Goutam Manna,
- Abstract summary: Black holes may serve as a bridge between quantum theory and general relativity.
This study posits that understanding black hole physics is essential to resolving major cosmological and astrophysical paradoxes.
- Score: 0.0
- License:
- Abstract: This study presents an algebraic framework to explore the fundamental relationship between gravity and quantum mechanics, with particular emphasis on the role of primordial black holes (PBHs) in cosmology. Through the concept of self-gravitating condensed light, specifically in the form of a photon Bose-Einstein condensate, this work examines the quantum attributes of PBHs and their implications for early universe dynamics, baryogenesis, and the formation of large-scale structures. The model also investigates quantized characteristics of black holes, such as mass, entropy, and temperature, suggesting that quantum processes are fundamental to black hole mechanics. By addressing issues like the cosmological constant problem and the information loss paradox, this work provides insights into Planck-scale physics and proposes that PBHs may serve as a bridge between quantum theory and general relativity. This study ultimately posits that understanding black hole physics is essential to resolving major cosmological and astrophysical paradoxes for the ultimate unification of quantum mechanics with gravity.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Geometry-Information Duality: Quantum Entanglement Contributions to Gravitational Dynamics [0.0]
We propose a fundamental duality between the geometric properties of spacetime and the informational content of quantum fields.
We modify Einstein's field equations by introducing an informational stress-energy tensor derived from quantum entanglement entropy.
Our results indicate that quantum information plays a crucial role in gravitational dynamics.
arXiv Detail & Related papers (2024-09-17T19:28:50Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Schr\"odinger's Black Hole Cat [0.0]
We show how to describe such "spacetime superpositions" and explore effects they induce upon quantum matter.
Our approach capitalizes on standard tools of quantum field theory in curved space.
arXiv Detail & Related papers (2022-04-01T12:11:36Z) - The deepest problem: some perspectives on quantum gravity [0.0]
It is evident that the long distance problem of unitarity, arising at high energies with black hole formation, is more profound.
This reveals a conflict between foundational principles of quantum field theory: those of quantum mechanics, relativity, and locality.
Perturbative gravity gives clues, with structure apparently different than in field theory.
arXiv Detail & Related papers (2022-02-16T19:00:12Z) - Snowmass White Paper: Quantum Aspects of Black Holes and the Emergence
of Spacetime [0.0]
Recently quantum information contained in Hawking radiation has been calculated, verifying a key aspect of the consistency of black hole evaporation with quantum mechanical unitarity.
We review these developments and describe some of the deep open questions in this subject.
These include the nature of the black hole interior, potential applications to quantum cosmology, the gravitational explanation of the fine structure of black holes, and the development of further connections to quantum information and laboratory quantum simulation.
arXiv Detail & Related papers (2022-01-09T22:01:30Z) - One-shot quantum error correction of classical and quantum information [10.957528713294874]
Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
arXiv Detail & Related papers (2020-11-02T01:24:59Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Scrambling and decoding the charged quantum information [8.497925513299606]
We show how the quantum information in the whole system has been represented by its charge sectors.
We discuss possible implications for black hole thought experiments and conjectures about quantum gravity in the dynamical setup.
arXiv Detail & Related papers (2020-03-25T14:32:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.