Connecting Gravity and Quantum Physics: Primordial Black Holes and the Evolution of the Universe
- URL: http://arxiv.org/abs/2411.11047v2
- Date: Mon, 16 Dec 2024 06:26:52 GMT
- Title: Connecting Gravity and Quantum Physics: Primordial Black Holes and the Evolution of the Universe
- Authors: Victor Borsevici, Samit Ganguly, Goutam Manna,
- Abstract summary: This study presents a novel framework to explore the fundamental relationship between gravity and quantum mechanics.
Specifically, it focuses on the role of primordial black holes (PBHs) in cosmology.
The model also investigates quantized characteristics of PBHs, such as mass, entropy, and temperature, suggesting that quantum processes are fundamental to black hole mechanics.
- Score: 0.0
- License:
- Abstract: This study presents a novel framework to explore the fundamental relationship between gravity and quantum mechanics, with particular emphasis on the role of primordial black holes (PBHs) in cosmology. Through the concept of self-gravitating condensed light, specifically in the form of the experimentally discovered photon Bose-Einstein condensate, this work examines the quantum attributes of PBHs and their implications for early universe dynamics, baryogenesis, and the very early formation of galaxies and large-scale structures, established by JWST data. The model also investigates quantized characteristics of PBHs, such as mass, entropy, and temperature, suggesting that quantum processes are fundamental to black hole mechanics. By addressing issues like the cosmological constant problem and the information loss paradox, dark matter, and dark energy, this work provides insights into Planck-scale physics and proposes that PBHs may serve as a bridge between quantum theory and general relativity. This study ultimately posits that understanding PBH physics is essential to resolving major cosmological and astrophysical paradoxes for the ultimate unification of quantum mechanics with gravity.
Related papers
- Looking for the quantum aspects of gravity in the gravitational Aharonov-Bohm experiment [0.0]
We develop a comprehensive theoretical framework for the gravitational Aharonov-Bohm (AB) effect.
This framework uncovers key insights into the entanglement dynamics and coherence properties of quantum systems.
Our analysis suggests that the derived gravitational AB phase is consistent with classical predictions.
arXiv Detail & Related papers (2024-12-12T13:29:04Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Schr\"odinger's Black Hole Cat [0.0]
We show how to describe such "spacetime superpositions" and explore effects they induce upon quantum matter.
Our approach capitalizes on standard tools of quantum field theory in curved space.
arXiv Detail & Related papers (2022-04-01T12:11:36Z) - Snowmass White Paper: Quantum Aspects of Black Holes and the Emergence
of Spacetime [0.0]
Recently quantum information contained in Hawking radiation has been calculated, verifying a key aspect of the consistency of black hole evaporation with quantum mechanical unitarity.
We review these developments and describe some of the deep open questions in this subject.
These include the nature of the black hole interior, potential applications to quantum cosmology, the gravitational explanation of the fine structure of black holes, and the development of further connections to quantum information and laboratory quantum simulation.
arXiv Detail & Related papers (2022-01-09T22:01:30Z) - Relativistic Particle Motion and Quantum Optics in a Weak Gravitational
Field [0.0]
Long-baseline quantum experiments in space make it necessary to better understand the time evolution of relativistic quantum particles in a weakly varying gravitational field.
We explain why conventional treatments by traditional quantum optics and atomic physics may become inadequate when faced with issues related to locality, simultaneity, signaling, causality, etc.
Adding the effects of gravitation, we are led to Quantum Field Theory in Curved Spacetime (QFTCST)
This well-established theory should serve as the canonical reference theory to a large class of proposed space experiments testing the foundations of gravitation and quantum theory.
arXiv Detail & Related papers (2021-06-23T16:32:45Z) - Classical Physics and Hamiltonian Quantum Mechanics as Relics of the Big
Bang [0.0]
We discuss the origin of the "quasiclassical realm" of familiar experience and Hamiltonian quantum mechanics.
It is argued that these features of the universe are not general properties of quantum theory, but rather approximate features that are emergent after the Planck time.
arXiv Detail & Related papers (2021-03-15T17:42:46Z) - One-shot quantum error correction of classical and quantum information [10.957528713294874]
Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
arXiv Detail & Related papers (2020-11-02T01:24:59Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.