Vortex information in multiphoton scalar pair production
- URL: http://arxiv.org/abs/2411.11067v1
- Date: Sun, 17 Nov 2024 13:09:46 GMT
- Title: Vortex information in multiphoton scalar pair production
- Authors: Hong-Hao Fan, Cui-Wen Zhang, Suo Tang, Bai-Song Xie,
- Abstract summary: Vortex information of scalar pair production in circularly polarized field is investigated in the multiphoton regime.
We find that vortex orientation is related to the intrinsic orbital angular momentum of created particles.
The magnitude of the orbital angular momentum, i.e., the topology charge is determined by the number of absorbed photons.
- Score: 0.0
- License:
- Abstract: Vortex information of scalar pair production in circularly polarized field is investigated in the multiphoton regime. We find that vortex orientation is related to the intrinsic orbital angular momentum of created particles associating with the helicity of absorbed photons, while the magnitude of the orbital angular momentum, i.e., the topology charge is determined by the number of absorbed photons. Moreover, the properties of particle creation and vortices formation can be understood by analyzing the pair production process in quasiparticle representation. This study provides new insights into the angular momentum transfer from field to particle in the scalar pair production process. It is expected that there are similar findings about vortex features for different spin alignment in electron-positron pair production in strong fields via the topology charge as a new freedom.
Related papers
- Microscopic origin of polarization-entangled Stokes-anti-Stokes photons
in diamond [0.0]
Violation of the Clauser-Horne-Shimony-Holt inequality for the polarization of Stokes-anti-Stokes (SaS) photon pairs near a Raman resonance is demonstrated.
arXiv Detail & Related papers (2023-06-14T15:11:20Z) - Vortex Structures and Momentum Sharing in Dynamic Sauter-Schwinger
Process [0.0]
Vortex pattern formation in electron-positron pair creation from vacuum by a time-dependent electric field of linear polarization is analyzed.
Their sensitivity to the laser field parameters such as the field frequency and intensity is also studied.
arXiv Detail & Related papers (2023-06-13T10:23:17Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Production of twisted particles in magnetic fields [62.997667081978825]
Quantum states suitable for a production of charged particles in a uniform magnetic field are determined.
Experiments allowing one successful discoveries of twisted positrons and positroniums are developed.
arXiv Detail & Related papers (2022-07-28T14:20:36Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Emergence of Intra-Particle Entanglement and Time-Varying Violation of
Bell's Inequality in Dirac Matter [0.0]
We show the emergence and dynamics of intra-particle entanglement in Dirac fermions.
The entanglement is a complex dynamic quantity but is generally large, independent of the initial state.
These features are also expected to impact entanglement between pairs of particles, and may be detectable in experiments that combine Cooper pair splitting with nonlocal measurements of spin-spin correlation in mesoscopic devices based on Dirac materials.
arXiv Detail & Related papers (2020-07-03T09:55:09Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Time evolution of charged particle wave functions in optical crystal:
The coherent Kapitza-Dirac effect for plasma-based proton beams [0.0]
The stationary eigenstates and eigenvalues for the ponderomotive potential of an optical crystal are numerically obtained.
As an application, the diffraction of proton beams is studied, where the experimental parameters are optimized to observe the diffraction pattern for a microwave plasma-based proton beam system.
arXiv Detail & Related papers (2020-02-18T16:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.