論文の概要: ForPKG-1.0: A Framework for Constructing Forestry Policy Knowledge Graph and Application Analysis
- arxiv url: http://arxiv.org/abs/2411.11090v1
- Date: Sun, 17 Nov 2024 14:45:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:59.614357
- Title: ForPKG-1.0: A Framework for Constructing Forestry Policy Knowledge Graph and Application Analysis
- Title(参考訳): ForPKG-1.0:森林政策知識グラフの構築とアプリケーション分析のためのフレームワーク
- Authors: Jingyun Sun, Zhongze Luo,
- Abstract要約: ポリシー知識グラフは、プロジェクトコンプライアンス、ポリシー分析、インテリジェントな質問応答といったタスクの意思決定支援を提供することができる。
本稿では、林業分野に着目し、完全な政策知識グラフ構築フレームワークを設計する。
知識グラフリソースはオープンソースプラットフォーム上でリリースされ、森林政策関連の知的システムの基本的な知識基盤として機能する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A policy knowledge graph can provide decision support for tasks such as project compliance, policy analysis, and intelligent question answering, and can also serve as an external knowledge base to assist the reasoning process of related large language models. Although there have been many related works on knowledge graphs, there is currently a lack of research on the construction methods of policy knowledge graphs. This paper, focusing on the forestry field, designs a complete policy knowledge graph construction framework, including: firstly, proposing a fine-grained forestry policy domain ontology; then, proposing an unsupervised policy information extraction method, and finally, constructing a complete forestry policy knowledge graph. The experimental results show that the proposed ontology has good expressiveness and extensibility, and the policy information extraction method proposed in this paper achieves better results than other unsupervised methods. Furthermore, by analyzing the application of the knowledge graph in the retrieval-augmented-generation task of the large language models, the practical application value of the knowledge graph in the era of large language models is confirmed. The knowledge graph resource will be released on an open-source platform and can serve as the basic knowledge base for forestry policy-related intelligent systems. It can also be used for academic research. In addition, this study can provide reference and guidance for the construction of policy knowledge graphs in other fields.
- Abstract(参考訳): ポリシー知識グラフは、プロジェクトコンプライアンス、ポリシー分析、インテリジェントな質問応答などのタスクに対する意思決定支援を提供し、また、関連する大きな言語モデルの推論プロセスを支援するための外部知識ベースとしても機能する。
知識グラフに関する多くの関連研究があるが、政策知識グラフの構築方法に関する研究は、現在不足している。
本稿では、林業分野に着目し、まず、きめ細かい林業政策ドメインオントロジーを提案し、次に、監督されていない政策情報抽出方法を提案し、最後に、完全な林業政策知識グラフを構築することを含む、完全な政策知識グラフ構築フレームワークを設計する。
実験の結果,提案するオントロジーは表現性と拡張性に優れており,本論文で提案するポリシ情報抽出法は他の教師なし手法よりも優れた結果が得られることがわかった。
さらに、大規模言語モデルの検索強化タスクにおける知識グラフの応用を分析することにより、大規模言語モデルの時代の知識グラフの実用的応用価値を確認する。
知識グラフリソースはオープンソースプラットフォーム上でリリースされ、森林政策関連の知的システムの基本的な知識基盤として機能する。
学術研究にも用いられる。
また、他の分野における政策知識グラフ構築のための参照とガイダンスを提供することができる。
関連論文リスト
- Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQAは知識グラフに格納された構造化情報を活用することで自然言語の質問に答える。
本稿では,Q-KGR(Q-Guided Knowledge Graph Re-scoring method)を提案する。
また,大規模言語モデルに再認識された知識グラフを注入するパラメータ効率の高い手法であるKnowformerを導入し,事実推論を行う能力を高める。
論文 参考訳(メタデータ) (2024-10-02T10:27:07Z) - Knowledge Graph Extension by Entity Type Recognition [2.8231106019727195]
本稿では,エンティティ型認識に基づく知識グラフ拡張フレームワークを提案する。
このフレームワークは、異なる知識グラフ間でスキーマとエンティティを整列させることにより、高品質な知識抽出を実現することを目的としている。
論文 参考訳(メタデータ) (2024-05-03T19:55:03Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
グラフ形式のデータの可視化は、データ分析において重要な役割を担い、重要な洞察を提供し、情報的な意思決定を支援する。
大規模言語モデルのような大規模な基盤モデルは、様々な自然言語処理タスクに革命をもたらした。
本研究は,自然言語処理,コンピュータビジョン,データ解析の分野における研究者や実践者の包括的資源として機能する。
論文 参考訳(メタデータ) (2024-03-18T17:57:09Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
本稿では,最新の生成型大規模言語モデルの可能性を活用する,革新的な知識グラフ生成手法を提案する。
このアプローチは、新しい反復的なゼロショットと外部知識に依存しない戦略を含むパイプラインで伝達される。
我々は、我々の提案がスケーラブルで多目的な知識グラフ構築に適したソリューションであり、異なる新しい文脈に適用できると主張している。
論文 参考訳(メタデータ) (2023-07-03T16:01:45Z) - A Survey of Knowledge Graph Embedding and Their Applications [0.17205106391379024]
知識グラフの埋め込みにより、現実世界のアプリケーションが情報を消費してパフォーマンスを向上させることができる。
本稿では、単純な翻訳モデルからリッチメントモデルへのKG埋め込みの分野の成長について紹介する。
論文 参考訳(メタデータ) (2021-07-16T12:07:53Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
VQAの最も難しい質問の1つは、質問に答えるために画像に存在しない外部の知識を必要とする場合です。
本研究では,解答に必要な知識が与えられたり記入されたりしないオープンドメイン知識を,トレーニング時やテスト時にも検討する。
知識表現と推論には2つのタイプがあります。
まず、トランスベースのモデルで教師なし言語事前トレーニングと教師付きトレーニングデータから効果的に学ぶことができる暗黙的な知識。
論文 参考訳(メタデータ) (2020-12-20T20:13:02Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
本稿では、自然言語処理と機械学習を利用して研究論文から実体や関係を抽出する新しいアーキテクチャを提案する。
本研究では,現在最先端の自然言語処理ツールとテキストマイニングツールを用いて,知識抽出の課題に取り組む。
セマンティックWebドメイン内の論文26,827件から抽出した109,105件のトリプルを含む科学知識グラフを作成した。
論文 参考訳(メタデータ) (2020-10-28T08:31:40Z) - A Survey of Embedding Space Alignment Methods for Language and Knowledge
Graphs [77.34726150561087]
単語,文,知識グラフの埋め込みアルゴリズムに関する現在の研究状況について調査する。
本稿では、関連するアライメント手法の分類と、この研究分野で使用されるベンチマークデータセットについて論じる。
論文 参考訳(メタデータ) (2020-10-26T16:08:13Z) - Knowledge Graphs [43.06435841693428]
我々は、知識グラフに使用される様々なグラフベースのデータモデルとクエリ言語を動機付け、対比する。
本稿では,帰納的手法と帰納的手法を組み合わせた知識の表現と抽出について説明する。
我々は知識グラフの高レベルな今後の研究方向性を結論づける。
論文 参考訳(メタデータ) (2020-03-04T20:20:32Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
我々は,1)知識グラフ表現学習,2)知識獲得と完成,3)時間的知識グラフ,および4)知識認識アプリケーションに関する研究トピックをレビューする。
知識獲得、特に知識グラフの完成、埋め込み方法、経路推論、論理ルール推論について概観する。
メタラーニング、コモンセンス推論、時間的知識グラフなど、いくつかの新しいトピックを探求する。
論文 参考訳(メタデータ) (2020-02-02T13:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。