論文の概要: Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML
- arxiv url: http://arxiv.org/abs/2411.11101v1
- Date: Sun, 17 Nov 2024 15:17:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:25.468948
- Title: Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML
- Title(参考訳): 異なるコースのための異なる馬:MLにおけるバイアス軽減アルゴリズムの比較
- Authors: Prakhar Ganeesh, Usman Gohar, Lu Cheng, Golnoosh Farnadi,
- Abstract要約: いくつかのアルゴリズムが達成した公正度に有意なばらつきを示し、学習パイプラインが公正度スコアに与える影響を明らかにした。
ほとんどのバイアス軽減技術は同等のパフォーマンスを実現することができると強調する。
私たちの研究は、アルゴリズムの開発ライフサイクルにおける様々な選択が公正性にどのように影響するか、将来の研究を促進することを願っています。
- 参考スコア(独自算出の注目度): 8.97966746660587
- License:
- Abstract: With fairness concerns gaining significant attention in Machine Learning (ML), several bias mitigation techniques have been proposed, often compared against each other to find the best method. These benchmarking efforts tend to use a common setup for evaluation under the assumption that providing a uniform environment ensures a fair comparison. However, bias mitigation techniques are sensitive to hyperparameter choices, random seeds, feature selection, etc., meaning that comparison on just one setting can unfairly favour certain algorithms. In this work, we show significant variance in fairness achieved by several algorithms and the influence of the learning pipeline on fairness scores. We highlight that most bias mitigation techniques can achieve comparable performance, given the freedom to perform hyperparameter optimization, suggesting that the choice of the evaluation parameters-rather than the mitigation technique itself-can sometimes create the perceived superiority of one method over another. We hope our work encourages future research on how various choices in the lifecycle of developing an algorithm impact fairness, and trends that guide the selection of appropriate algorithms.
- Abstract(参考訳): 機械学習(ML)において公平性に関する懸念が注目される中、いくつかのバイアス緩和手法が提案され、最良の方法を見つけるためにしばしば比較されている。
これらのベンチマークの取り組みは、均一な環境を提供することが公正な比較を保証するという仮定の下で、共通の設定を評価に使用する傾向にある。
しかし、バイアス緩和技術はハイパーパラメータの選択、ランダムシード、特徴選択などに敏感であり、1つの設定での比較は不公平に特定のアルゴリズムを好むことができる。
本研究では,いくつかのアルゴリズムが達成した公正度に有意なばらつきを示すとともに,学習パイプラインが公正度スコアに与える影響について述べる。
また,ほとんどのバイアス緩和技術は,ハイパーパラメータ最適化の自由度を考慮し,評価パラメータの選択を緩和技術自体よりも優先的に行うことで,他の手法よりも知覚的な優位性を生み出すことが示唆された。
われわれの研究は、アルゴリズム開発ライフサイクルにおける様々な選択が公正性や適切なアルゴリズムの選択を導くトレンドにどのように影響するか、将来の研究を促進することを願っている。
関連論文リスト
- ABCFair: an Adaptable Benchmark approach for Comparing Fairness Methods [12.774108753281809]
実世界の問題設定のデシラタに適応できるベンチマーク手法であるABCFairを紹介する。
我々はABCFairを、大規模、伝統的両方のデータセットとデュアルラベル(バイアス付き、バイアスなし)データセットの両方で事前、内、および後処理の手法に適用する。
論文 参考訳(メタデータ) (2024-09-25T14:26:07Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
より優れた一般化性を持つ性能向上フェアアルゴリズムが必要である。
本稿では,トレーニングデータとテストデータ間の分散シフトがモデル一般化性に与える影響を解消する適応的リライジング手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T13:04:55Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Are metaheuristics worth it? A computational comparison between
nature-inspired and deterministic techniques on black-box optimization
problems [0.0]
本稿では,これらの各ブランチから選択した手法の広範な比較を行う。
その結果,目的関数評価が比較的安価である状況に対処する場合,本手法は決定論的手法よりも性能が著しく向上することがわかった。
論文 参考訳(メタデータ) (2022-12-13T19:44:24Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
ランキングアグリゲーション問題では、各項目を比較する際に、様々な精度レベルが示される。
本稿では,ノイズのあるペアワイズ比較によってアイテムのランクを推定する,除去に基づくアクティブサンプリング戦略を提案する。
提案アルゴリズムは,商品の真のランキングを高い確率で返却できることを示す。
論文 参考訳(メタデータ) (2021-10-08T13:51:55Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - A Comparative Evaluation of Quantification Methods [3.1499058381005227]
量子化は、データセット内のクラス分布を予測する問題を表す。
近年,様々なアルゴリズムが提案されている。
40以上のデータセットで24の異なるメソッドを比較します。
論文 参考訳(メタデータ) (2021-03-04T18:51:06Z) - One-vs.-One Mitigation of Intersectional Bias: A General Method to
Extend Fairness-Aware Binary Classification [0.48733623015338234]
1-vs.ワン・マイティゲーション(英: One-vs. One Mitigation)は、二項分類のためのフェアネス認識機械学習と、センシティブ属性に関連する各サブグループの比較プロセスである。
本手法は,すべての設定において従来の手法よりも交叉バイアスを緩和する。
論文 参考訳(メタデータ) (2020-10-26T11:35:39Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルは準最適に収束するか、あるいは最適解に収束しないかもしれないことを示す。
理論的保証を伴って適応的なアプローチを提案し、いくつかの既存手法を実証的に上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-08T18:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。