論文の概要: CLMIA: Membership Inference Attacks via Unsupervised Contrastive Learning
- arxiv url: http://arxiv.org/abs/2411.11144v1
- Date: Sun, 17 Nov 2024 18:25:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:57.310544
- Title: CLMIA: Membership Inference Attacks via Unsupervised Contrastive Learning
- Title(参考訳): CLMIA:教師なしコントラスト学習によるメンバーシップ推論攻撃
- Authors: Depeng Chen, Xiao Liu, Jie Cui, Hong Zhong,
- Abstract要約: メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングにデータサンプルが使用されているかどうかを決定するために機能を利用する。
本稿では、教師なしのコントラスト学習を用いて攻撃モデルを訓練するCLMIAと呼ばれる新たな攻撃手法を提案する。
- 参考スコア(独自算出の注目度): 19.163930810721027
- License:
- Abstract: Since machine learning model is often trained on a limited data set, the model is trained multiple times on the same data sample, which causes the model to memorize most of the training set data. Membership Inference Attacks (MIAs) exploit this feature to determine whether a data sample is used for training a machine learning model. However, in realistic scenarios, it is difficult for the adversary to obtain enough qualified samples that mark accurate identity information, especially since most samples are non-members in real world applications. To address this limitation, in this paper, we propose a new attack method called CLMIA, which uses unsupervised contrastive learning to train an attack model without using extra membership status information. Meanwhile, in CLMIA, we require only a small amount of data with known membership status to fine-tune the attack model. Experimental results demonstrate that CLMIA performs better than existing attack methods for different datasets and model structures, especially with data with less marked identity information. In addition, we experimentally find that the attack performs differently for different proportions of labeled identity information for member and non-member data. More analysis proves that our attack method performs better with less labeled identity information, which applies to more realistic scenarios.
- Abstract(参考訳): 機械学習モデルは、しばしば限られたデータセットでトレーニングされるため、同じデータサンプルで何回もトレーニングされるため、トレーニングデータセットのほとんどを記憶することができる。
メンバシップ推論攻撃(MIA)は、この機能を利用して、データサンプルが機械学習モデルのトレーニングに使用されているかどうかを判断する。
しかし、現実的なシナリオでは、ほとんどのサンプルは現実世界のアプリケーションでは非メンバーであるため、正確なアイデンティティ情報を示す十分な適格なサンプルを得ることは困難である。
そこで本稿では,教師なしのコントラスト学習を用いて攻撃モデルの訓練を行うCLMIAという新たな攻撃手法を提案する。
一方、CLMIAでは、攻撃モデルを微調整するために、既知のメンバーシップステータスを持つ少数のデータしか必要としない。
実験結果から,CLMIAは個々のデータセットやモデル構造,特に識別情報の少ないデータに対して,既存の攻撃方法よりも優れた性能を示した。
さらに,この攻撃は,会員データと非会員データに対して,ラベル付きID情報の比率が異なる場合に異なる動作を示すことが実験的に確認された。
より多くの分析により,より現実的なシナリオに適用可能なラベル付きID情報が少ない場合に,攻撃手法がより優れた性能を示すことが証明された。
関連論文リスト
- Chameleon: Increasing Label-Only Membership Leakage with Adaptive
Poisoning [8.084254242380057]
メンバーシップ推論(MI)攻撃は、特定のデータサンプルがモデルのトレーニングデータセットに含まれているかどうかを判断する。
既存のラベルのみのMI攻撃は、偽陽性率の低い体制での加入を推測するには効果がないことを示す。
本稿では,新たなアダプティブなデータ中毒戦略と効率的なクエリ選択手法を活用する新たな攻撃型Chameleonを提案する。
論文 参考訳(メタデータ) (2023-10-05T18:46:27Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - Canary in a Coalmine: Better Membership Inference with Ensembled
Adversarial Queries [53.222218035435006]
私たちは、差別的で多様なクエリを最適化するために、逆ツールを使用します。
我々の改善は既存の方法よりもはるかに正確な会員推定を実現している。
論文 参考訳(メタデータ) (2022-10-19T17:46:50Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
そこで本研究では,対象モデルのトレーニングプロセス全体から,メンバシップ情報を利用する新たな攻撃手法であるシステムを提案する。
我々の攻撃は、既存の方法よりも0.1%低い偽陽性率で、少なくとも6$times$高い真陽性率を達成する。
論文 参考訳(メタデータ) (2022-08-31T16:02:26Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - Leveraging Adversarial Examples to Quantify Membership Information
Leakage [30.55736840515317]
パターン認識モデルにおけるメンバシップ推論の問題に対処する新しいアプローチを開発する。
この量はトレーニングデータに属する可能性を反映していると我々は主張する。
我々の手法は、最先端の戦略に匹敵する、あるいは上回る性能を発揮する。
論文 参考訳(メタデータ) (2022-03-17T19:09:38Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
メンバーシップ推論攻撃は、モデルがトレーニングセット内の個々のデータポイントについてリークする個人情報の定量化に使用される。
我々は,AUCスコアを高い精度で達成できる新たな攻撃アルゴリズムを導き,その性能に影響を及ぼすさまざまな要因を強調した。
我々のアルゴリズムは、モデルにおけるプライバシ損失の極めて正確な近似を捉え、機械学習モデルにおけるプライバシリスクの正確かつ詳細な推定を行うためのツールとして使用することができる。
論文 参考訳(メタデータ) (2021-11-18T13:31:22Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z) - Privacy Analysis of Deep Learning in the Wild: Membership Inference
Attacks against Transfer Learning [27.494206948563885]
本稿では,転送学習モデルに対するメンバシップ推論攻撃の最初の体系的評価について述べる。
4つの実世界の画像データセットに対する実験により、メンバーシップ推論が効果的なパフォーマンスを達成できることが示されている。
我々の結果は、実際に機械学習モデルから生じるメンバーシップリスクの深刻さを浮き彫りにした。
論文 参考訳(メタデータ) (2020-09-10T14:14:22Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。