Noise Filtering Benchmark for Neuromorphic Satellites Observations
- URL: http://arxiv.org/abs/2411.11233v1
- Date: Mon, 18 Nov 2024 02:02:24 GMT
- Title: Noise Filtering Benchmark for Neuromorphic Satellites Observations
- Authors: Sami Arja, Alexandre Marcireau, Nicholas Owen Ralph, Saeed Afshar, Gregory Cohen,
- Abstract summary: Event cameras capture sparse, asynchronous brightness changes which offer high temporal resolution, high dynamic range, low power consumption, and sparse data output.
These advantages make them ideal for Space Situational Awareness, particularly in detecting resident space objects moving within a telescope's field of view.
However, the output from event cameras often includes substantial background activity noise, which is known to be more prevalent in low-light conditions.
This noise can overwhelm the sparse events generated by satellite signals, making detection and tracking more challenging.
- Score: 39.781091151259766
- License:
- Abstract: Event cameras capture sparse, asynchronous brightness changes which offer high temporal resolution, high dynamic range, low power consumption, and sparse data output. These advantages make them ideal for Space Situational Awareness, particularly in detecting resident space objects moving within a telescope's field of view. However, the output from event cameras often includes substantial background activity noise, which is known to be more prevalent in low-light conditions. This noise can overwhelm the sparse events generated by satellite signals, making detection and tracking more challenging. Existing noise-filtering algorithms struggle in these scenarios because they are typically designed for denser scenes, where losing some signal is acceptable. This limitation hinders the application of event cameras in complex, real-world environments where signals are extremely sparse. In this paper, we propose new event-driven noise-filtering algorithms specifically designed for very sparse scenes. We categorise the algorithms into logical-based and learning-based approaches and benchmark their performance against 11 state-of-the-art noise-filtering algorithms, evaluating how effectively they remove noise and hot pixels while preserving the signal. Their performance was quantified by measuring signal retention and noise removal accuracy, with results reported using ROC curves across the parameter space. Additionally, we introduce a new high-resolution satellite dataset with ground truth from a real-world platform under various noise conditions, which we have made publicly available. Code, dataset, and trained weights are available at \url{https://github.com/samiarja/dvs_sparse_filter}.
Related papers
- LED: A Large-scale Real-world Paired Dataset for Event Camera Denoising [19.51468512911655]
Event camera has significant advantages in capturing dynamic scene information while being prone to noise interference.
We construct a new paired real-world event denoising dataset (LED), including 3K sequences with 18K seconds of high-resolution (1200*680) event streams.
We propose a novel effective denoising framework(DED) using homogeneous dual events to generate the GT with better separating noise from the raw.
arXiv Detail & Related papers (2024-05-30T06:02:35Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Spatially Adaptive Self-Supervised Learning for Real-World Image
Denoising [73.71324390085714]
We propose a novel perspective to solve the problem of real-world sRGB image denoising.
We take into account the respective characteristics of flat and textured regions in noisy images, and construct supervisions for them separately.
We present a locally aware network (LAN) to meet the requirement, while LAN itself is supervised with the output of BNN.
arXiv Detail & Related papers (2023-03-27T06:18:20Z) - E-MLB: Multilevel Benchmark for Event-Based Camera Denoising [12.698543500397275]
Event cameras are more sensitive to junction leakage current and photocurrent as they output differential signals.
We construct a large-scale event denoising dataset (multilevel benchmark for event denoising, E-MLB) for the first time.
We also propose the first nonreference event denoising metric, the event structural ratio (ESR), which measures the structural intensity of given events.
arXiv Detail & Related papers (2023-03-21T16:31:53Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
Real-world low-light environment usually suffer from lower visibility and heavier noise, due to insufficient light or hardware limitation.
We propose a novel end-to-end method termed Real-world Low-light Enhancement & Denoising Network (RLED-Net)
arXiv Detail & Related papers (2022-10-02T14:57:23Z) - Neuromorphic Camera Denoising using Graph Neural Network-driven
Transformers [3.805262583092311]
Neuromorphic vision is a bio-inspired technology that has triggered a paradigm shift in the computer-vision community.
Neuromorphic cameras suffer from significant amounts of measurement noise.
This noise deteriorates the performance of neuromorphic event-based perception and navigation algorithms.
arXiv Detail & Related papers (2021-12-17T18:57:36Z) - Convolutional Deep Denoising Autoencoders for Radio Astronomical Images [0.0]
We apply a Machine Learning technique known as Convolutional Denoising Autoencoder to denoise synthetic images of state-of-the-art radio telescopes.
Our autoencoder can effectively denoise complex images identifying and extracting faint objects at the limits of the instrumental sensitivity.
arXiv Detail & Related papers (2021-10-16T17:08:30Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics.
In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable.
Our framework is driven by an unsupervised learning approach, where only the noise samples are required.
arXiv Detail & Related papers (2021-01-21T04:48:15Z) - Dynamic Resource-aware Corner Detection for Bio-inspired Vision Sensors [0.9988653233188148]
We present an algorithm to detect asynchronous corners from a stream of events in real-time on embedded systems.
The proposed algorithm is capable of selecting the best corner candidate among neighbors and achieves an average execution time savings of 59 %.
arXiv Detail & Related papers (2020-10-29T12:01:33Z) - CycleISP: Real Image Restoration via Improved Data Synthesis [166.17296369600774]
We present a framework that models camera imaging pipeline in forward and reverse directions.
By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets.
arXiv Detail & Related papers (2020-03-17T15:20:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.