Learning from Noise: Enhancing DNNs for Event-Based Vision through Controlled Noise Injection
- URL: http://arxiv.org/abs/2506.03918v1
- Date: Wed, 04 Jun 2025 13:10:26 GMT
- Title: Learning from Noise: Enhancing DNNs for Event-Based Vision through Controlled Noise Injection
- Authors: Marcin Kowalczyk, Kamil Jeziorek, Tomasz Kryjak,
- Abstract summary: Event data frequently suffers from considerable noise, negatively impacting the performance and robustness of deep learning models.<n>We propose a novel noise-injection training methodology designed to enhance the robustness against varying levels of event noise.<n>Our approach introduces controlled noise directly into the training data, enabling models to learn noise-resilient representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event-based sensors offer significant advantages over traditional frame-based cameras, especially in scenarios involving rapid motion or challenging lighting conditions. However, event data frequently suffers from considerable noise, negatively impacting the performance and robustness of deep learning models. Traditionally, this problem has been addressed by applying filtering algorithms to the event stream, but this may also remove some of relevant data. In this paper, we propose a novel noise-injection training methodology designed to enhance the neural networks robustness against varying levels of event noise. Our approach introduces controlled noise directly into the training data, enabling models to learn noise-resilient representations. We have conducted extensive evaluations of the proposed method using multiple benchmark datasets (N-Caltech101, N-Cars, and Mini N-ImageNet) and various network architectures, including Convolutional Neural Networks, Vision Transformers, Spiking Neural Networks, and Graph Convolutional Networks. Experimental results show that our noise-injection training strategy achieves stable performance over a range of noise intensities, consistently outperforms event-filtering techniques, and achieves the highest average classification accuracy, making it a viable alternative to traditional event-data filtering methods in an object classification system. Code: https://github.com/vision-agh/DVS_Filtering
Related papers
- Machine Unlearning for Robust DNNs: Attribution-Guided Partitioning and Neuron Pruning in Noisy Environments [5.8166742412657895]
Deep neural networks (DNNs) have achieved remarkable success across diverse domains, but their performance can be severely degraded by noisy or corrupted training data.<n>We propose a novel framework that integrates attribution-guided data partitioning, discriminative neuron pruning, and targeted fine-tuning to mitigate the impact of noisy samples.<n>Our framework achieves approximately a 10% absolute accuracy improvement over standard retraining on CIFAR-10 with injected label noise.
arXiv Detail & Related papers (2025-06-13T09:37:11Z) - Policy Gradient-Driven Noise Mask [3.69758875412828]
We propose a novel pretraining pipeline that learns to generate conditional noise masks specifically tailored to improve performance on multi-modal and multi-organ datasets.<n>A key aspect is that the policy network's role is limited to obtaining an intermediate (or heated) model before fine-tuning.<n>Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
arXiv Detail & Related papers (2024-04-29T23:53:42Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.<n>We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
Deep denoising models require extensive real-world training data, which is challenging to acquire.<n>We propose a novel Realistic Noise Synthesis Diffusor (RNSD) method using diffusion models to address these challenges.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Neuromorphic Camera Denoising using Graph Neural Network-driven
Transformers [3.805262583092311]
Neuromorphic vision is a bio-inspired technology that has triggered a paradigm shift in the computer-vision community.
Neuromorphic cameras suffer from significant amounts of measurement noise.
This noise deteriorates the performance of neuromorphic event-based perception and navigation algorithms.
arXiv Detail & Related papers (2021-12-17T18:57:36Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z) - Adaptive Denoising via GainTuning [17.72738152112575]
Deep convolutional neural networks (CNNs) for image denoising are usually trained on large datasets.
We propose "GainTuning", in which CNN models pre-trained on large datasets are adaptively and selectively adjusted for individual test images.
We show that GainTuning improves state-of-the-art CNNs on standard image-denoising benchmarks, boosting their denoising performance on nearly every image in a held-out test set.
arXiv Detail & Related papers (2021-07-27T13:35:48Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM accelerators often suffer from intrinsic noise in the physical components.
We propose a noise-agnostic method to achieve robust neural network performance against any noise setting.
arXiv Detail & Related papers (2020-07-07T06:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.