論文の概要: Large corpora and large language models: a replicable method for automating grammatical annotation
- arxiv url: http://arxiv.org/abs/2411.11260v1
- Date: Mon, 18 Nov 2024 03:29:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:54.216536
- Title: Large corpora and large language models: a replicable method for automating grammatical annotation
- Title(参考訳): 大規模コーパスと大規模言語モデル:文法アノテーションの自動化のための複製可能な方法
- Authors: Cameron Morin, Matti Marttinen Larsson,
- Abstract要約: 英語評価動詞構築における形式的変化の事例研究に応用された方法論的パイプライン「consider X (as) (to be) Y」を紹介する。
少数のトレーニングデータだけで、保留中のテストサンプルで90%以上の精度でモデルに到達します。
本研究は, 文法的構成と文法的変化および変化に関する幅広いケーススタディに対して, 結果の一般化可能性について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Much linguistic research relies on annotated datasets of features extracted from text corpora, but the rapid quantitative growth of these corpora has created practical difficulties for linguists to manually annotate large data samples. In this paper, we present a replicable, supervised method that leverages large language models for assisting the linguist in grammatical annotation through prompt engineering, training, and evaluation. We introduce a methodological pipeline applied to the case study of formal variation in the English evaluative verb construction 'consider X (as) (to be) Y', based on the large language model Claude 3.5 Sonnet and corpus data from Davies' NOW and EnTenTen21 (SketchEngine). Overall, we reach a model accuracy of over 90% on our held-out test samples with only a small amount of training data, validating the method for the annotation of very large quantities of tokens of the construction in the future. We discuss the generalisability of our results for a wider range of case studies of grammatical constructions and grammatical variation and change, underlining the value of AI copilots as tools for future linguistic research.
- Abstract(参考訳): 多くの言語学的研究は、テキストコーパスから抽出された特徴の注釈付きデータセットに依存しているが、これらのコーパスの急速な量的成長は、言語学者が手動で大規模なデータサンプルに注釈を付けるのに実際的な困難を生んでいる。
本稿では,機械工学,訓練,評価を通じて文法アノテーションの言語学者を支援するために,大規模言語モデルを活用した複製可能な教師付き手法を提案する。
本稿では,大言語モデル Claude 3.5 Sonnet と Davies の NOW と EntenTen21 (SketchEngine) のコーパスデータに基づいて,英語評価動詞構築における形式的変化のケーススタディに適用した手法について紹介する。
全体として,少数のトレーニングデータしか持たない保留試験サンプルにおいて,90%以上の精度でモデルに到達し,将来,非常に大量のトークンのアノテーションの手法を検証した。
今後の言語研究のツールとしてのAIコピロの価値を浮き彫りにして, 文法構造や文法的変化, 変化の幅広いケーススタディに対する我々の結果の一般化可能性について論じる。
関連論文リスト
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text [8.956635443376527]
非標準テキストへの言語モデル適応の根底にある課題を理解するための一連の実験を提示する。
我々は、言語モデルの既存バイアスとの相互作用と、いくつかの種類の言語的変動を近似する介入を設計する。
学習データのサイズや性質の異なる言語モデル適応時の介入を適用することで、知識伝達がいつ成功するかについて重要な洞察を得ることができる。
論文 参考訳(メタデータ) (2024-04-10T18:56:53Z) - Split and Rephrase with Large Language Models [2.499907423888049]
Split and Rephrase (SPRP) タスクは、複雑な文を短い文法文の列に分割する。
タスク上の大きな言語モデルを評価し、主要なメトリクスに基づいて、技術の現状を大幅に改善できることを示します。
論文 参考訳(メタデータ) (2023-12-18T10:16:37Z) - CompoundPiece: Evaluating and Improving Decompounding Performance of
Language Models [77.45934004406283]
複合語を構成語に分割する作業である「分解」を体系的に研究する。
We introduced a dataset of 255k compound and non-compound words across 56 various languages obtained from Wiktionary。
分割のための専用モデルを訓練するための新しい手法を導入する。
論文 参考訳(メタデータ) (2023-05-23T16:32:27Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - A Unified Neural Network Model for Readability Assessment with Feature
Projection and Length-Balanced Loss [17.213602354715956]
本稿では,可読性評価のための特徴投影と長さバランス損失を考慮したBERTモデルを提案する。
本モデルは,2つの英語ベンチマークデータセットと1つの中国語教科書データセットを用いて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-19T05:33:27Z) - GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation [9.501648136713694]
GPT-3のような大規模言語モデルは優れた数ショット学習者であり、自然なテキストプロンプトで制御できる。
本稿では,大規模言語モデルを用いて現実的なテキストサンプルを生成する新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2021-04-18T11:39:33Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。