Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition
- URL: http://arxiv.org/abs/2411.11288v1
- Date: Mon, 18 Nov 2024 05:16:11 GMT
- Title: Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition
- Authors: Yang Chen, Jingcai Guo, Song Guo, Dacheng Tao,
- Abstract summary: We propose a novel dyNamically Evolving dUal skeleton-semantic syneRgistic framework.
We first construct the spatial-temporal evolving micro-prototypes and integrate dynamic context-aware side information.
We introduce the spatial compression and temporal memory mechanisms to guide the growth of spatial-temporal micro-prototypes.
- Score: 64.56321246196859
- License:
- Abstract: Zero-shot skeleton action recognition is a non-trivial task that requires robust unseen generalization with prior knowledge from only seen classes and shared semantics. Existing methods typically build the skeleton-semantics interactions by uncontrollable mappings and conspicuous representations, thereby can hardly capture the intricate and fine-grained relationship for effective cross-modal transferability. To address these issues, we propose a novel dyNamically Evolving dUal skeleton-semantic syneRgistic framework with the guidance of cOntext-aware side informatioN (dubbed Neuron), to explore more fine-grained cross-modal correspondence from micro to macro perspectives at both spatial and temporal levels, respectively. Concretely, 1) we first construct the spatial-temporal evolving micro-prototypes and integrate dynamic context-aware side information to capture the intricate and synergistic skeleton-semantic correlations step-by-step, progressively refining cross-model alignment; and 2) we introduce the spatial compression and temporal memory mechanisms to guide the growth of spatial-temporal micro-prototypes, enabling them to absorb structure-related spatial representations and regularity-dependent temporal patterns. Notably, such processes are analogous to the learning and growth of neurons, equipping the framework with the capacity to generalize to novel unseen action categories. Extensive experiments on various benchmark datasets demonstrated the superiority of the proposed method.
Related papers
- DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - Spatial-Temporal Decoupling Contrastive Learning for Skeleton-based
Human Action Recognition [10.403751563214113]
STD-CL is a framework to obtain discriminative and semantically distinct representations from the sequences.
STD-CL achieves solid improvements on NTU60, NTU120, and NW-UCLA benchmarks.
arXiv Detail & Related papers (2023-12-23T02:54:41Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Multi-task Collaborative Pre-training and Individual-adaptive-tokens
Fine-tuning: A Unified Framework for Brain Representation Learning [3.1453938549636185]
We propose a unified framework that combines Collaborative pre-training and Individual--Tokens fine-tuning.
The proposed MCIAT achieves state-of-the-art diagnosis performance on the ADHD-200 dataset.
arXiv Detail & Related papers (2023-06-20T08:38:17Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
We propose a Non-local Recurrent Neural Memory (NRNM) for supervised sequence representation learning.
Our model is able to capture long-range dependencies and latent high-level features can be distilled by our model.
Our model compares favorably against other state-of-the-art methods specifically designed for each of these sequence applications.
arXiv Detail & Related papers (2022-07-20T07:26:15Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Complementary Structure-Learning Neural Networks for Relational
Reasoning [3.528645587678267]
We show that pattern separation in the hippocampus allows rapid learning in novel environments.
slower learning in neocortex accumulates small weight changes to extract systematic structure from well-learned environments.
arXiv Detail & Related papers (2021-05-19T06:25:21Z) - Skeleton-Aware Networks for Deep Motion Retargeting [83.65593033474384]
We introduce a novel deep learning framework for data-driven motion between skeletons.
Our approach learns how to retarget without requiring any explicit pairing between the motions in the training set.
arXiv Detail & Related papers (2020-05-12T12:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.