論文の概要: Towards Federated Graph Learning in One-shot Communication
- arxiv url: http://arxiv.org/abs/2411.11304v5
- Date: Thu, 23 Jan 2025 02:38:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:09.604514
- Title: Towards Federated Graph Learning in One-shot Communication
- Title(参考訳): ワンショットコミュニケーションにおけるフェデレーショングラフ学習に向けて
- Authors: Guochen Yan, Xunkai Li, Luyuan Xie, Wentao Zhang, Qingni Shen, Yuejian Fang, Zhonghai Wu,
- Abstract要約: Federated Graph Learning(FGL)は、分散プライベートグラフ間のデータサイロを壊すための有望なパラダイムとして登場した。
ワンショットフェデレートラーニング(OFL)は1ラウンドでのコラボレーションを可能にするが、既存のOFLメソッドはグラフデータには有効ではない。
本稿では,ノード分類のための最初の$textbfO-pFGL$メソッド(textbfO-pFGL$)を提案する。
- 参考スコア(独自算出の注目度): 27.325478113745206
- License:
- Abstract: Federated Graph Learning (FGL) has emerged as a promising paradigm for breaking data silos among distributed private graphs. In practical scenarios involving heterogeneous distributed graph data, personalized Federated Graph Learning (pFGL) aims to enhance model utility by training personalized models tailored to client needs. However, existing pFGL methods often require numerous communication rounds under heterogeneous graphs, leading to significant communication overhead and security concerns. While One-shot Federated Learning (OFL) enables collaboration in a single round, existing OFL methods are designed for image-centric tasks and ineffective for graph data, leaving a critical gap in the field. Additionally, personalized models derived from existing methods suffer from bias, failing to effectively generalize to the minority. To address these challenges, we propose the first $\textbf{O}$ne-shot $\textbf{p}$ersonalized $\textbf{F}$ederated $\textbf{G}$raph $\textbf{L}$earning method ($\textbf{O-pFGL}$) for node classification, compatible with Secure Aggregation protocols for privacy preservation. Specifically, for effective graph learning in one communication round, our method estimates and aggregates class-wise feature distribution statistics to construct a global pseudo-graph on the server, facilitating the training of a global graph model. To mitigate bias, we introduce a two-stage personalized training approach that adaptively balances local personal information and global insights from the pseudo-graph, improving both personalization and generalization. Extensive experiments on 12 multi-scale graph datasets demonstrate that our method significantly outperforms state-of-the-art baselines across various settings.
- Abstract(参考訳): Federated Graph Learning(FGL)は、分散プライベートグラフ間のデータサイロを壊すための有望なパラダイムとして登場した。
不均一な分散グラフデータを含む実践シナリオでは、パーソナライズされたフェデレーショングラフラーニング(pFGL)は、クライアントのニーズに合わせてパーソナライズされたモデルのトレーニングによってモデルユーティリティを向上させることを目的としている。
しかし、既存のpFGL法は、しばしば不均一なグラフの下で多数の通信ラウンドを必要とし、通信オーバーヘッドとセキュリティ上の問題を引き起こす。
One-shot Federated Learning (OFL) は単一ラウンドでのコラボレーションを可能にするが、既存の OFL メソッドは画像中心のタスク用に設計されており、グラフデータには有効ではない。
さらに、既存の手法から派生したパーソナライズされたモデルは偏見に悩まされ、マイノリティに効果的に一般化することができなかった。
これらの課題に対処するために、ノード分類のための最初の$\textbf{O}$ne-shot $\textbf{p}$ersonalized $\textbf{F}$ederated $\textbf{G}$raph $\textbf{L}$earning method$\textbf{O-pFGL}$)を提案する。
具体的には、一つの通信ラウンドにおける効果的なグラフ学習のために、我々の手法は、クラスワイドの特徴分布統計を推定して集約し、サーバ上にグローバルな擬似グラフを構築し、グローバルなグラフモデルのトレーニングを容易にする。
バイアスを軽減するために、我々はローカルな個人情報と擬似グラフからのグローバルな洞察を適応的にバランスさせ、パーソナライズと一般化の両方を改善する2段階のパーソナライズドトレーニングアプローチを導入する。
12のマルチスケールグラフデータセットに対する大規模な実験により、我々の手法は様々な設定において最先端のベースラインを著しく上回ることを示した。
関連論文リスト
- Personalized federated learning based on feature fusion [2.943623084019036]
フェデレートされた学習により、分散クライアントは、クライアントのプライバシを保護するためにデータをローカルに保存しながら、トレーニングで協力することができる。
pFedPMと呼ばれる個人化学習手法を提案する。
このプロセスでは、従来のグラデーションアップロードを機能アップロードに置き換え、通信コストを削減し、異種クライアントモデルを可能にする。
論文 参考訳(メタデータ) (2024-06-24T12:16:51Z) - FedSheafHN: Personalized Federated Learning on Graph-structured Data [22.825083541211168]
我々はFedSheafHNと呼ばれるモデルを提案し、各クライアントのローカルサブグラフをサーバ構築コラボレーショングラフに埋め込む。
我々のモデルは複雑なクライアント特性の統合と解釈を改善します。
また、高速なモデル収束と効果的な新しいクライアントの一般化も備えている。
論文 参考訳(メタデータ) (2024-05-25T04:51:41Z) - APGL4SR: A Generic Framework with Adaptive and Personalized Global
Collaborative Information in Sequential Recommendation [86.29366168836141]
逐次推薦のための適応およびパーソナライズされたグラフ学習(APGL4SR)というグラフ駆動型フレームワークを提案する。
APGL4SRは、適応的でパーソナライズされたグローバルな協調情報をシーケンシャルレコメンデーションシステムに組み込む。
一般的なフレームワークとして、APGL4SRは大きなマージンを持つ他のベースラインよりも優れている。
論文 参考訳(メタデータ) (2023-11-06T01:33:24Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
分散ディープラーニングのためのグラフベースパーソナライズアルゴリズム(GATTA)を提案する。
特に、各エージェントのパーソナライズされたモデルは、グローバルな部分とノード固有の部分で構成される。
グラフ内の各エージェントを1つのノードとして扱うことにより、ノード固有のパラメータを特徴として扱うことにより、グラフアテンション機構の利点を継承することができる。
論文 参考訳(メタデータ) (2023-05-22T13:48:30Z) - Graph Learning Across Data Silos [12.343382413705394]
本稿では,スムーズなグラフ信号からグラフトポロジを推定する問題を考える。
データは分散クライアントにあり、プライバシー上の懸念などの要因により、ローカルクライアントを去ることは禁じられている。
本稿では,各ローカルクライアントに対してパーソナライズされたグラフと,全クライアントに対して単一のコンセンサスグラフを共同で学習する,自動重み付き多重グラフ学習モデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T02:14:57Z) - FedEgo: Privacy-preserving Personalized Federated Graph Learning with
Ego-graphs [22.649780281947837]
いくつかの実践的なシナリオでは、グラフデータは複数の分散パーティに別々に格納されます。
上記の課題に対処するために,egoグラフに基づくフェデレーショングラフ学習フレームワークであるFedEgoを提案する。
論文 参考訳(メタデータ) (2022-08-29T15:47:36Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Privatized Graph Federated Learning [57.14673504239551]
グラフによって連結された複数の単位からなるグラフフェデレーション学習を導入する。
グラフ準同型摂動はアルゴリズムが微分プライベートであることを保証するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2022-03-14T13:48:23Z) - Tackling the Local Bias in Federated Graph Learning [48.887310972708036]
フェデレーショングラフ学習(FGL)では、グローバルグラフは異なるクライアントに分散し、各クライアントがサブグラフを保持する。
既存のFGL手法では、クロスクライアントエッジを効果的に活用できず、トレーニング中に構造情報が失われる。
集中型環境で訓練されたモデルと類似した局所モデルを作成するための新しいFGLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-22T08:22:36Z) - FedGL: Federated Graph Learning Framework with Global Self-Supervision [22.124339267195822]
FedGLは、データプライバシを保護しながら、高品質なグローバルグラフモデルを取得することができる。
グローバルなセルフスーパービジョンにより、各クライアントの情報がプライバシー保護の方法で流れて共有できます。
論文 参考訳(メタデータ) (2021-05-07T11:27:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。