Linear-optical protocols for mitigating and suppressing noise in bosonic systems
- URL: http://arxiv.org/abs/2411.11313v1
- Date: Mon, 18 Nov 2024 06:14:42 GMT
- Title: Linear-optical protocols for mitigating and suppressing noise in bosonic systems
- Authors: Y. S. Teo, S. U. Shringarpure, S. Cho, H. Jeong,
- Abstract summary: We establish linear-optical methods to mitigate and suppress bosonic noise channels.
Probability error cancellation can be carried out to mitigate errors in expectation-value estimation.
For weak central-Gaussian dephasing, the suppression fidelity increases monotonically with the number of ancillas.
- Score: 0.0
- License:
- Abstract: Quantum-information processing and computation with bosonic qubits are corruptible by noise channels. Using interferometers and photon-subtraction gadgets (PSGs) accompanied by linear amplification and attenuation, we establish linear-optical methods to mitigate and suppress bosonic noise channels. We first show that by employing amplifying and attenuating PSGs respectively at the input and output of either a thermal or random-displacement channel, probabilistic error cancellation (PEC) can be carried out to mitigate errors in expectation-value estimation. We also derive optimal physical estimators that are properly constrained to improve the sampling accuracy of PEC. Next, we prove that a purely-dephasing channel is coherently suppressible using a multimode Mach--Zehnder interferometer and conditional vacuum measurements (VMZ). In the limit of infinitely-many ancillas, with nonvanishing success rates, VMZ using either Hadamard or two-design interferometers turns any dephasing channel into a phase-space-rotated linear-attenuation channel that can subsequently be inverted with (rotated) linear amplification without Kerr nonlinearity. Moreover, for weak central-Gaussian dephasing, the suppression fidelity increases monotonically with the number of ancillas and most optimally with Hadamard interferometers. We demonstrate the performance of these linear-optical mitigation and suppression schemes on common noise channels (and their compositions) and popular bosonic codes. While the theoretical formalism pertains to idling noise channels, we also provide numerical evidence supporting mitigation and suppression capabilities with respect to noise from universal gate operations.
Related papers
- Improving Continuous-variable Quantum Channels with Unitary Averaging [37.69303106863453]
We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel.
The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via a probabilistic error correcting protocol.
arXiv Detail & Related papers (2023-11-17T10:10:19Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Machine Learning assisted excess noise suppression for
continuous-variable quantum key distribution [10.533604439090514]
An excess noise suppression scheme based on equalization is proposed.
In this scheme, the distorted signals can be corrected through equalization assisted by a neural network and pilot tone.
The experimental results show that the scheme can suppress the excess noise to a lower level, and has a significant performance improvement.
arXiv Detail & Related papers (2022-07-21T12:31:13Z) - Macroscopic noise amplification by asymmetric dyads in non-Hermitian
optical systems for generative diffusion models [55.2480439325792]
asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators.
integrated light emission from such asymmetric dyads can be efficiently used for all-optical degenerative diffusion models of machine learning.
arXiv Detail & Related papers (2022-06-24T10:19:36Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Enhanced on-chip frequency measurement using weak value amplification [0.0]
We present an integrated design to precisely measure optical frequency using weak value amplification with a multi-mode interferometer.
The technique involves introducing a weak perturbation to the system and then post-electing the data in such a way that the signal is amplified without amplifying the technical noise.
arXiv Detail & Related papers (2021-03-29T16:45:15Z) - Robust quantum gates using smooth pulses and physics-informed neural
networks [0.0]
We present the first general method for obtaining truly smooth pulses that minimizes sensitivity to noise.
We parametrize the Hamiltonian using a neural network, which allows the use of a large number of optimization parameters.
We demonstrate the capability of our approach by finding smooth shapes which suppress the effects of noise within the logical subspace as well as leakage out of that subspace.
arXiv Detail & Related papers (2020-11-04T19:31:36Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Anneal-path correction in flux qubits [0.0]
Quantum annealers require accurate control and optimized operation schemes to reduce noise levels.
We study a high coherence four-junction capacitively shunted flux qubit (CSFQ)
arXiv Detail & Related papers (2020-02-25T23:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.