Improving Continuous-variable Quantum Channels with Unitary Averaging
- URL: http://arxiv.org/abs/2311.10432v2
- Date: Thu, 9 May 2024 22:53:15 GMT
- Title: Improving Continuous-variable Quantum Channels with Unitary Averaging
- Authors: S. Nibedita Swain, Ryan J. Marshman, Peter P. Rohde, Austin P. Lund, Alexander S. Solntsev, Timothy C. Ralph,
- Abstract summary: We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel.
The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via a probabilistic error correcting protocol.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant hurdle for quantum information and processing using bosonic systems is stochastic phase errors which occur as the photons propagate through a channel. These errors will reduce the purity of states passing through the channel and so reducing the channels capacity. We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel. The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via probabilistic error correcting protocol. The scheme is robust to loss and typically succeeds with high probability. We provide both numerical simulations and analytical approximations tailored for relevant parameters with the improvement of practical and current technology. We also show the asymptotic nature of the protocol, highlighting both current and future relevance.
Related papers
- Linear-optical protocols for mitigating and suppressing noise in bosonic systems [0.0]
We establish linear-optical methods to mitigate and suppress bosonic noise channels.
Probability error cancellation can be carried out to mitigate errors in expectation-value estimation.
For weak central-Gaussian dephasing, the suppression fidelity increases monotonically with the number of ancillas.
arXiv Detail & Related papers (2024-11-18T06:14:42Z) - Quantum channel correction outperforming direct transmission [0.0]
Long-distance optical quantum channels are necessarily lossy.
Quantum states carrying information in the channel can be probabilistically amplified to compensate for loss, but are destroyed when amplification fails.
We perform distillation by heralded amplification to improve a noisy entanglement channel.
We employ entanglement swapping to demonstrate that arbitrary quantum information transmission is unconditionally improved.
arXiv Detail & Related papers (2024-06-07T06:09:26Z) - Quantum error cancellation in photonic systems -- undoing photon losses [3.6141518756781514]
Real photonic devices are subject to photon losses that can decohere quantum information encoded in the system.
We introduce an error mitigation protocol inspired by probabilistic error cancellation.
We show that our quantum error cancellation protocol can undo photon losses in expectation value estimation tasks.
arXiv Detail & Related papers (2024-03-08T12:16:43Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Channel Simulation: Finite Blocklengths and Broadcast Channels [13.561997774592667]
We study channel simulation under common randomness assistance in the finite-blocklength regime.
We identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance.
arXiv Detail & Related papers (2022-12-22T13:08:55Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Quantum capacity and codes for the bosonic loss-dephasing channel [5.560545784372178]
Bosonic qubits encoded in continuous-variable systems provide a promising alternative to two-level qubits for quantum computation and communication.
A detailed understanding of the combined photon loss and dephasing channel is lacking.
We show that, unlike its constituent parts, the combined loss-dephasing channel is non-degradable.
arXiv Detail & Related papers (2022-04-30T20:44:11Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.