Enhanced on-chip frequency measurement using weak value amplification
- URL: http://arxiv.org/abs/2103.15752v1
- Date: Mon, 29 Mar 2021 16:45:15 GMT
- Title: Enhanced on-chip frequency measurement using weak value amplification
- Authors: John Steinmetz, Kevin Lyons, Meiting Song, Jaime Cardenas, Andrew N.
Jordan
- Abstract summary: We present an integrated design to precisely measure optical frequency using weak value amplification with a multi-mode interferometer.
The technique involves introducing a weak perturbation to the system and then post-electing the data in such a way that the signal is amplified without amplifying the technical noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an integrated design to precisely measure optical frequency using
weak value amplification with a multi-mode interferometer. The technique
involves introducing a weak perturbation to the system and then post-selecting
the data in such a way that the signal is amplified without amplifying the
technical noise, as has previously been demonstrated in a free-space setup. We
demonstrate the advantages of a Bragg grating with two band gaps for obtaining
simultaneous, stable high transmission and high dispersion. We numerically
model the interferometer in order to demonstrate the amplification effect. The
device is shown to have advantages over both the free-space implementation and
other methods of measuring optical frequency on a chip, such as an integrated
Mach-Zehnder interferometer.
Related papers
- Linear-optical protocols for mitigating and suppressing noise in bosonic systems [0.0]
We establish linear-optical methods to mitigate and suppress bosonic noise channels.
Probability error cancellation can be carried out to mitigate errors in expectation-value estimation.
For weak central-Gaussian dephasing, the suppression fidelity increases monotonically with the number of ancillas.
arXiv Detail & Related papers (2024-11-18T06:14:42Z) - Enhancing interferometry using weak value amplification with real weak values [2.248608623448951]
We introduce an ultra-sensitive interferometric protocol that combines weak value amplification with traditional interferometry.
This WVA+interferometry protocol uses weak value amplification of the relative delay between two paths to enhance the interferometric sensitivity.
We experimentally demonstrate that the signal-to-noise ratio can be improved by one to three orders of magnitude.
arXiv Detail & Related papers (2024-03-31T02:15:10Z) - Frequency tuning of a squeezed vacuum state using interferometric
enhanced Bragg diffraction effect [1.3831703318753605]
We experimentally demonstrate the optical frequency tuning of a squeezed vacuum state by using an acousto-optic modulator based bi-frequency interferometer.
The systematic efficiency of the frequency tuning device is $91%$, which is only confined by the optical transmission efficiency of the acousto-optic modulators.
arXiv Detail & Related papers (2024-01-11T01:53:52Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - An acousto-optic modulator based bi-frequency interferometer for quantum
technology [1.3831703318753605]
We demonstrate a high performance AOM based bi-frequency interferometer, which can realize either beating or beating free interference for single photon level quantum state.
We further demonstrate applications of the interferometer in quantum technology, including bi-frequency coherent combination, frequency tuning and optical switching.
arXiv Detail & Related papers (2022-10-02T01:59:46Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Noise reduction in qubit readout with a two-mode squeezed interferometer [0.0]
We measure a transmon qubit/cavity system with an unbalanced two-mode squeezed light interferometer formed from two JPCs.
We have observed a 31% improvement in power Signal-to-Noise Ratio (SNR) of projective readout compared to that of coherent light readout in the same system.
tuning the interferometer to be as unprojective as possible was associated with an increase in the quantum efficiency of our readout relative to the optimum setting for projective measurement.
arXiv Detail & Related papers (2020-07-30T13:55:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.