論文の概要: Color-Oriented Redundancy Reduction in Dataset Distillation
- arxiv url: http://arxiv.org/abs/2411.11329v1
- Date: Mon, 18 Nov 2024 06:48:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:04.112358
- Title: Color-Oriented Redundancy Reduction in Dataset Distillation
- Title(参考訳): データセット蒸留における色配向冗長性低減
- Authors: Bowen Yuan, Zijian Wang, Yadan Luo, Mahsa Baktashmotlagh, Yadan Luo, Zi Huang,
- Abstract要約: 本稿では,個々の画像とデータセットの全体レベルでの色冗長性を最小化するフレームワークを提案する。
画像レベルでは、縮小色空間から各ピクセルに動的に色を割り当てるために、専用ニューラルネットワークであるパレットネットワークを用いる。
既存のDD法と比較して,提案した色認識DDの優れた性能を示す総合的な性能評価を行った。
- 参考スコア(独自算出の注目度): 39.0015492336067
- License:
- Abstract: Dataset Distillation (DD) is designed to generate condensed representations of extensive image datasets, enhancing training efficiency. Despite recent advances, there remains considerable potential for improvement, particularly in addressing the notable redundancy within the color space of distilled images. In this paper, we propose AutoPalette, a framework that minimizes color redundancy at the individual image and overall dataset levels, respectively. At the image level, we employ a palette network, a specialized neural network, to dynamically allocate colors from a reduced color space to each pixel. The palette network identifies essential areas in synthetic images for model training and consequently assigns more unique colors to them. At the dataset level, we develop a color-guided initialization strategy to minimize redundancy among images. Representative images with the least replicated color patterns are selected based on the information gain. A comprehensive performance study involving various datasets and evaluation scenarios is conducted, demonstrating the superior performance of our proposed color-aware DD compared to existing DD methods. The code is available at \url{https://github.com/KeViNYuAn0314/AutoPalette}.
- Abstract(参考訳): Dataset Distillation (DD)は、広範な画像データセットの凝縮表現を生成し、トレーニング効率を向上させるように設計されている。
近年の進歩にもかかわらず、特に蒸留画像の色空間における顕著な冗長性に対処する上で、改善の可能性は高い。
本稿では,各画像における色冗長度を最小化するフレームワークであるAutoPaletteを提案する。
画像レベルでは、縮小色空間から各ピクセルに動的に色を割り当てるために、専用ニューラルネットワークであるパレットネットワークを用いる。
パレットネットワークは、モデルトレーニングのための合成画像に不可欠な領域を特定し、その結果、よりユニークな色を割り当てる。
データセットレベルでは、画像間の冗長性を最小化するカラー誘導初期化戦略を開発する。
情報ゲインに基づいて、最小の再現色パターンを持つ代表画像を選択する。
様々なデータセットと評価シナリオを含む総合的な性能調査を行い,既存のDD法と比較して,提案した色認識DDの優れた性能を示す。
コードは \url{https://github.com/KeViNYuAn0314/AutoPalette} で公開されている。
関連論文リスト
- MultiColor: Image Colorization by Learning from Multiple Color Spaces [4.738828630428634]
MultiColorは、グレースケールイメージを自動的にカラー化する学習ベースの新しいアプローチである。
我々は、個々の色空間に専用の着色モジュール群を用いる。
これらの予測色チャネルは様々な色空間を表すため、相補的なネットワークは相補性を生かし、優雅で合理的な色付き画像を生成するように設計されている。
論文 参考訳(メタデータ) (2024-08-08T02:34:41Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
低照度画像強調(LLIE)タスクは、劣化した低照度画像から詳細と視覚情報を復元する傾向がある。
水平/垂直インテンシティ(HVI)と呼ばれる新しいトレーニング可能なカラー空間を提案する。
輝度と色をRGBチャネルから切り離して、拡張中の不安定性を緩和するだけでなく、トレーニング可能なパラメータによって異なる照明範囲の低照度画像にも適応する。
論文 参考訳(メタデータ) (2024-02-08T16:47:43Z) - SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning
for Automatic Image Colorization [1.220743263007369]
生成逆ネットワーク(SPDGAN)を用いたSymmetric Positive Definite (SPD) Manifold Learningに基づく完全自動カラー化手法を提案する。
本モデルは,2つの識別器とジェネレータの対角ゲームを確立する。その目標は,残差接続により層間の色情報を失うことなく,偽のカラー化画像を生成することである。
論文 参考訳(メタデータ) (2023-12-21T00:52:01Z) - DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders [19.560271615736212]
DDColorは画像カラー化のためのデュアルデコーダを備えたエンドツーエンドの手法である。
我々のアプローチには、ピクセルデコーダとクエリベースのカラーデコーダが含まれる。
我々の2つのデコーダは、色とマルチスケールの意味表現の相関を確立するために協力する。
論文 参考訳(メタデータ) (2022-12-22T11:17:57Z) - ParaColorizer: Realistic Image Colorization using Parallel Generative
Networks [1.7778609937758327]
グレースケール画像のカラー化は、情報復元のためのAIの魅力的な応用である。
並列なGANベースのカラー化フレームワークを提案する。
マルチモーダル問題を評価するために一般的に使用される非知覚的評価指標の欠点を示す。
論文 参考訳(メタデータ) (2022-08-17T13:49:44Z) - Immiscible Color Flows in Optimal Transport Networks for Image
Classification [68.8204255655161]
画像の色分布を利用するために最適な輸送原理を適用する物理に着想を得たシステムを提案する。
私たちのダイナミクスは、画像から構築されたネットワーク上を走行する色を不可視的に制御します。
本手法は,カラー情報が重要となるデータセットにおける画像分類タスクにおいて,競合するアルゴリズムよりも優れる。
論文 参考訳(メタデータ) (2022-05-04T12:41:36Z) - Image Colorization: A Survey and Dataset [94.59768013860668]
本稿では,最先端の深層学習に基づく画像着色技術に関する包括的調査を行う。
既存の着色技法を7つのクラスに分類し、その性能を規定する重要な要因について論じる。
我々は既存のデータセットと提案した画像の両方を用いて、既存の画像のカラー化手法を広範囲に実験的に評価する。
論文 参考訳(メタデータ) (2020-08-25T01:22:52Z) - Instance-aware Image Colorization [51.12040118366072]
本稿では,インスタンス認識のカラー化を実現する手法を提案する。
我々のネットワークアーキテクチャは、市販のオブジェクト検出器を利用して、収穫されたオブジェクト画像を取得する。
類似したネットワークを用いて、フルイメージの特徴を抽出し、融合モジュールを適用して最終色を予測する。
論文 参考訳(メタデータ) (2020-05-21T17:59:23Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
そこで,カラー量子化ネットワークであるColorCNNを提案する。
1ビットのカラースペース(すなわち2色)だけで、提案されたネットワークはCIFAR10データセット上で82.1%のトップ-1の精度を達成した。
アプリケーションの場合、PNGでエンコードされた場合、提案したカラー量子化は、極低ビットレート方式の他の画像圧縮方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-17T17:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。