論文の概要: MultiColor: Image Colorization by Learning from Multiple Color Spaces
- arxiv url: http://arxiv.org/abs/2408.04172v1
- Date: Thu, 8 Aug 2024 02:34:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:50:38.500059
- Title: MultiColor: Image Colorization by Learning from Multiple Color Spaces
- Title(参考訳): MultiColor: 複数の色空間から学習した画像のカラー化
- Authors: Xiangcheng Du, Zhao Zhou, Yanlong Wang, Zhuoyao Wang, Yingbin Zheng, Cheng Jin,
- Abstract要約: MultiColorは、グレースケールイメージを自動的にカラー化する学習ベースの新しいアプローチである。
我々は、個々の色空間に専用の着色モジュール群を用いる。
これらの予測色チャネルは様々な色空間を表すため、相補的なネットワークは相補性を生かし、優雅で合理的な色付き画像を生成するように設計されている。
- 参考スコア(独自算出の注目度): 4.738828630428634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep networks have shown impressive performance in the image restoration tasks, such as image colorization. However, we find that previous approaches rely on the digital representation from single color model with a specific mapping function, a.k.a., color space, during the colorization pipeline. In this paper, we first investigate the modeling of different color spaces, and find each of them exhibiting distinctive characteristics with unique distribution of colors. The complementarity among multiple color spaces leads to benefits for the image colorization task. We present MultiColor, a new learning-based approach to automatically colorize grayscale images that combines clues from multiple color spaces. Specifically, we employ a set of dedicated colorization modules for individual color space. Within each module, a transformer decoder is first employed to refine color query embeddings and then a color mapper produces color channel prediction using the embeddings and semantic features. With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images. We conduct extensive experiments on real-world datasets, and the results demonstrate superior performance over the state-of-the-arts.
- Abstract(参考訳): ディープネットワークは、画像のカラー化など、画像復元タスクにおいて顕著なパフォーマンスを示している。
しかし、従来のアプローチは、色分けパイプライン中に特定のマッピング関数、すなわち色空間を持つ単一色モデルからのデジタル表現に依存していた。
本稿では,まず,異なる色空間のモデル化について検討し,それぞれが独特の色分布を持つ特徴を持つことを示す。
複数の色空間間の相補性は、画像のカラー化タスクの利点をもたらす。
我々は、複数の色空間からヒントを合成し、グレースケールの画像を自動的に色づけする新しい学習ベースのアプローチであるMultiColorを提案する。
具体的には、個々の色空間に専用の着色モジュール群を用いる。
各モジュール内では、まずトランスフォーマーデコーダを使用して、カラークエリの埋め込みを洗練し、次いでカラーマッパーが埋め込みとセマンティック機能を使用してカラーチャネル予測を生成する。
これらの予測色チャネルは様々な色空間を表すため、相補的なネットワークは相補性を生かし、優雅で合理的な色付き画像を生成するように設計されている。
実世界のデータセットについて広範な実験を行い、その結果、最先端のデータセットよりも優れた性能を示した。
関連論文リスト
- Paint Bucket Colorization Using Anime Character Color Design Sheets [72.66788521378864]
ネットワークがセグメント間の関係を理解することができる包摂的マッチングを導入する。
ネットワークのトレーニングパイプラインは、カラー化と連続フレームカラー化の両方のパフォーマンスを著しく向上させる。
ネットワークのトレーニングをサポートするために、PaintBucket-Characterというユニークなデータセットを開発しました。
論文 参考訳(メタデータ) (2024-10-25T09:33:27Z) - Transforming Color: A Novel Image Colorization Method [8.041659727964305]
本稿では,色変換器とGANを用いた画像カラー化手法を提案する。
提案手法は,グローバルな情報を取得するためのトランスフォーマーアーキテクチャと,視覚的品質を改善するためのGANフレームワークを統合する。
実験の結果,提案するネットワークは,他の最先端のカラー化技術よりも優れていた。
論文 参考訳(メタデータ) (2024-10-07T07:23:42Z) - Palette-based Color Transfer between Images [9.471264982229508]
そこで我々は,新しいカラースキームを自動生成できるパレットベースのカラートランスファー手法を提案する。
再設計されたパレットベースのクラスタリング手法により、色分布に応じて画素を異なるセグメントに分類することができる。
本手法は, 自然リアリズム, 色整合性, 一般性, 堅牢性の観点から, ピア法に対して有意な優位性を示す。
論文 参考訳(メタデータ) (2024-05-14T01:41:19Z) - Automatic Controllable Colorization via Imagination [55.489416987587305]
本稿では,反復的な編集と修正が可能な自動色付けフレームワークを提案する。
グレースケール画像内のコンテンツを理解することにより、トレーニング済みの画像生成モデルを用いて、同じコンテンツを含む複数の画像を生成する。
これらの画像は、人間の専門家の過程を模倣して、色付けの参考となる。
論文 参考訳(メタデータ) (2024-04-08T16:46:07Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) は、事前訓練された安定拡散(SD)モデルを利用する多モードカラー化手法である。
ユーザのストロークをエンコードして、局所的な色操作を正確に行うための効果的な方法を提案する。
また、カラーオーバーフローと不正確な色付けの長年の問題に対処するために、自己注意に基づく新しいモジュールとコンテンツ誘導型変形可能なオートエンコーダを導入する。
論文 参考訳(メタデータ) (2024-02-16T17:51:13Z) - DiffColor: Toward High Fidelity Text-Guided Image Colorization with
Diffusion Models [12.897939032560537]
そこで我々はDiffColorと呼ばれる新しい手法を提案し、プロンプトテキストに条件付けされた鮮やかな色を復元する。
私たちはまず、CLIPベースのコントラスト損失を用いて色付き画像を生成するために、事前訓練されたテキスト・ツー・イメージ・モデルを微調整する。
次に、色付き画像とテキストプロンプトを整列した最適化されたテキスト埋め込みと、高品質な画像再構成を可能にする微調整拡散モデルを得る。
提案手法は,複数回の反復で鮮やかな多彩な色を生成でき,その構造と背景をそのままに保ちつつ,対象言語指導に適合させる。
論文 参考訳(メタデータ) (2023-08-03T09:38:35Z) - Name Your Colour For the Task: Artificially Discover Colour Naming via
Colour Quantisation Transformer [62.75343115345667]
そこで本研究では,色空間を定量化しつつ,画像上での認識を維持しつつ,色空間を定量化する新しい色量子化変換器CQFormerを提案する。
人工色システムと人間の言語における基本色用語との一貫性のある進化パターンを観察する。
我々のカラー量子化法は、画像記憶を効果的に圧縮する効率的な量子化法も提供する。
論文 参考訳(メタデータ) (2022-12-07T03:39:18Z) - Instance-aware Image Colorization [51.12040118366072]
本稿では,インスタンス認識のカラー化を実現する手法を提案する。
我々のネットワークアーキテクチャは、市販のオブジェクト検出器を利用して、収穫されたオブジェクト画像を取得する。
類似したネットワークを用いて、フルイメージの特徴を抽出し、融合モジュールを適用して最終色を予測する。
論文 参考訳(メタデータ) (2020-05-21T17:59:23Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
そこで,カラー量子化ネットワークであるColorCNNを提案する。
1ビットのカラースペース(すなわち2色)だけで、提案されたネットワークはCIFAR10データセット上で82.1%のトップ-1の精度を達成した。
アプリケーションの場合、PNGでエンコードされた場合、提案したカラー量子化は、極低ビットレート方式の他の画像圧縮方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-17T17:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。