CCExpert: Advancing MLLM Capability in Remote Sensing Change Captioning with Difference-Aware Integration and a Foundational Dataset
- URL: http://arxiv.org/abs/2411.11360v1
- Date: Mon, 18 Nov 2024 08:10:49 GMT
- Title: CCExpert: Advancing MLLM Capability in Remote Sensing Change Captioning with Difference-Aware Integration and a Foundational Dataset
- Authors: Zhiming Wang, Mingze Wang, Sheng Xu, Yanjing Li, Baochang Zhang,
- Abstract summary: We propose a novel model, CCExpert, based on a new, advanced multimodal large model framework.
First, we design a difference-aware integration module to capture multi-scale differences between bi-temporal images.
Secondly, we constructed a high-quality, diversified dataset called CC-Foundation, containing 200,000 image pairs and 1.2 million captions.
Finally, we employed a three-stage progressive training process to ensure the deep integration of the difference-aware integration module with the pretrained MLLM.
- Score: 26.056704438848985
- License:
- Abstract: Remote Sensing Image Change Captioning (RSICC) aims to generate natural language descriptions of surface changes between multi-temporal remote sensing images, detailing the categories, locations, and dynamics of changed objects (e.g., additions or disappearances). Many current methods attempt to leverage the long-sequence understanding and reasoning capabilities of multimodal large language models (MLLMs) for this task. However, without comprehensive data support, these approaches often alter the essential feature transmission pathways of MLLMs, disrupting the intrinsic knowledge within the models and limiting their potential in RSICC. In this paper, we propose a novel model, CCExpert, based on a new, advanced multimodal large model framework. Firstly, we design a difference-aware integration module to capture multi-scale differences between bi-temporal images and incorporate them into the original image context, thereby enhancing the signal-to-noise ratio of differential features. Secondly, we constructed a high-quality, diversified dataset called CC-Foundation, containing 200,000 image pairs and 1.2 million captions, to provide substantial data support for continue pretraining in this domain. Lastly, we employed a three-stage progressive training process to ensure the deep integration of the difference-aware integration module with the pretrained MLLM. CCExpert achieved a notable performance of $S^*_m=81.80$ on the LEVIR-CC benchmark, significantly surpassing previous state-of-the-art methods. The code and part of the dataset will soon be open-sourced at https://github.com/Meize0729/CCExpert.
Related papers
- ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification [52.405499816861635]
Multiple instance learning (MIL)-based framework has become the mainstream for processing the whole slide image (WSI)
We propose a dual-scale vision-language multiple instance learning (ViLa-MIL) framework for whole slide image classification.
arXiv Detail & Related papers (2025-02-12T13:28:46Z) - RSUniVLM: A Unified Vision Language Model for Remote Sensing via Granularity-oriented Mixture of Experts [17.76606110070648]
We propose RSUniVLM, a unified, end-to-end RS VLM for comprehensive vision understanding across multiple granularity.
RSUniVLM performs effectively in multi-image analysis, with instances of change detection and change captioning.
We also construct a large-scale RS instruction-following dataset based on a variety of existing datasets in both RS and general domain.
arXiv Detail & Related papers (2024-12-07T15:11:21Z) - Multi-scale Feature Enhancement in Multi-task Learning for Medical Image Analysis [1.6916040234975798]
Traditional deep learning methods in medical imaging often focus solely on segmentation or classification.
We propose a simple yet effective UNet-based MTL model, where features extracted by the encoder are used to predict classification labels, while the decoder produces the segmentation mask.
Experimental results across multiple medical datasets confirm the superior performance of our model in both segmentation and classification tasks.
arXiv Detail & Related papers (2024-11-30T04:20:05Z) - Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [49.439311430360284]
We introduce a novel data synthesis method inspired by contrastive learning and image difference captioning.
Our key idea involves challenging the model to discern both matching and distinct elements.
We leverage this generated dataset to fine-tune state-of-the-art (SOTA) MLLMs.
arXiv Detail & Related papers (2024-08-08T17:10:16Z) - P-MSDiff: Parallel Multi-Scale Diffusion for Remote Sensing Image Segmentation [8.46409964236009]
Diffusion models and multi-scale features are essential components in semantic segmentation tasks.
We propose a new model for semantic segmentation known as the diffusion model with parallel multi-scale branches.
Our model demonstrates superior performance based on the J1 metric on both the UAVid and Vaihingen Building datasets.
arXiv Detail & Related papers (2024-05-30T19:40:08Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - Learning Visual Representation from Modality-Shared Contrastive
Language-Image Pre-training [88.80694147730883]
We investigate a variety of Modality-Shared Contrastive Language-Image Pre-training (MS-CLIP) frameworks.
In studied conditions, we observe that a mostly unified encoder for vision and language signals outperforms all other variations that separate more parameters.
Our approach outperforms vanilla CLIP by 1.6 points in linear probing on a collection of 24 downstream vision tasks.
arXiv Detail & Related papers (2022-07-26T05:19:16Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.