論文の概要: Stacking Brick by Brick: Aligned Feature Isolation for Incremental Face Forgery Detection
- arxiv url: http://arxiv.org/abs/2411.11396v1
- Date: Mon, 18 Nov 2024 09:18:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:58.620035
- Title: Stacking Brick by Brick: Aligned Feature Isolation for Incremental Face Forgery Detection
- Title(参考訳): Brickによる積み重ねれんが:増分顔偽造検出のための特徴分離
- Authors: Jikang Cheng, Zhiyuan Yan, Ying Zhang, Li Hao, Jiaxin Ai, Qin Zou, Chen Li, Zhongyuan Wang,
- Abstract要約: 鼻訓練IFFDモデルは、新しい偽造物が統合されると破滅的な忘れがちである。
本稿では、SURデータを利用して分布を分離・調整するLatent-space Incremental Detector(LID)を提案する。
評価のために、IFFDに適したより高度で包括的なベンチマークを構築した。
- 参考スコア(独自算出の注目度): 18.46382766430443
- License:
- Abstract: The rapid advancement of face forgery techniques has introduced a growing variety of forgeries. Incremental Face Forgery Detection (IFFD), involving gradually adding new forgery data to fine-tune the previously trained model, has been introduced as a promising strategy to deal with evolving forgery methods. However, a naively trained IFFD model is prone to catastrophic forgetting when new forgeries are integrated, as treating all forgeries as a single ''Fake" class in the Real/Fake classification can cause different forgery types overriding one another, thereby resulting in the forgetting of unique characteristics from earlier tasks and limiting the model's effectiveness in learning forgery specificity and generality. In this paper, we propose to stack the latent feature distributions of previous and new tasks brick by brick, $\textit{i.e.}$, achieving $\textbf{aligned feature isolation}$. In this manner, we aim to preserve learned forgery information and accumulate new knowledge by minimizing distribution overriding, thereby mitigating catastrophic forgetting. To achieve this, we first introduce Sparse Uniform Replay (SUR) to obtain the representative subsets that could be treated as the uniformly sparse versions of the previous global distributions. We then propose a Latent-space Incremental Detector (LID) that leverages SUR data to isolate and align distributions. For evaluation, we construct a more advanced and comprehensive benchmark tailored for IFFD. The leading experimental results validate the superiority of our method.
- Abstract(参考訳): 顔偽造技術が急速に進歩し、様々な偽造技術が導入された。
IFFD(Incrmental Face Forgery Detection)は、以前トレーニングされたモデルを微調整するために、徐々に新しいフォージェリデータを追加することを含む、進化するフォージェリメソッドを扱うための有望な戦略として導入された。
しかし、全ての偽造品をリアル/フェイク分類において単一の「フェイク」クラスとして扱い、異なる偽造品が互いにオーバーライドしあうことにより、初期のタスクから固有の特徴を忘れてしまい、偽造品の特異性と一般性を学ぶモデルの有効性が制限されるため、鼻で訓練されたIFFDモデルは破滅的な忘れ物になりがちである。
本稿では,従来のタスクと新しいタスクの潜在的特徴分布を,ブロックで積み重ねて,$\textit{i.e.}$,$\textbf{aligned feature isolation}$を達成することを提案する。
このようにして、我々は学習した偽情報を保存し、分布オーバーライドを最小限にして新しい知識を蓄積し、破滅的な忘れを省くことを目的としている。
これを実現するために、まずSUR(Sparse Uniform Replay)を導入し、前回のグローバルディストリビューションの一様スパースバージョンとして扱うことができる代表サブセットを得る。
次に、SURデータを利用して分布を分離・調整するLatent-space Incremental Detector (LID)を提案する。
評価のために、IFFDに適したより高度で包括的なベンチマークを構築した。
その結果,本手法の優位性を検証した。
関連論文リスト
- Adaptive Margin Global Classifier for Exemplar-Free Class-Incremental Learning [3.4069627091757178]
既存の手法は主にバイアス学習を扱うことに焦点を当てている。
本研究では,データ不均衡やサンプリングといった既存手法のバイアス要因を回避するために,分散ベースグローバル(DBGC)を導入する。
さらに重要なのは、古いクラスの妥協された分布は、単純な操作、分散(VE)によってシミュレートされることだ。
この損失は、Adaptive Margin Softmax Cross Entropy (AMarX)と等価であることが証明されている。
論文 参考訳(メタデータ) (2024-09-20T07:07:23Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - FeCAM: Exploiting the Heterogeneity of Class Distributions in
Exemplar-Free Continual Learning [21.088762527081883]
Exemplar-free class-incremental learning (CIL)は、以前のタスクからのデータのリハーサルを禁止しているため、いくつかの課題がある。
第1タスクの後に特徴抽出器を凍結して分類器を漸進的に学習する手法が注目されている。
凍結した特徴抽出器を用いて新しいクラスプロトタイプを生成するCILのプロトタイプネットワークを探索し,プロトタイプとのユークリッド距離に基づいて特徴を分類する。
論文 参考訳(メタデータ) (2023-09-25T11:54:33Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - A Novel Plagiarism Detection Approach Combining BERT-based Word
Embedding, Attention-based LSTMs and an Improved Differential Evolution
Algorithm [11.142354615369273]
本稿では,アテンション機構に基づく長短期メモリ(LSTM)とトランスフォーマー(BERT)ワード埋め込みによる双方向エンコーダ表現に基づくプラギアリズム検出手法を提案する。
BERTは下流タスクに含まれることができ、タスク固有の構造として微調整され、訓練されたBERTモデルは様々な言語特性を検出することができる。
論文 参考訳(メタデータ) (2023-05-03T18:26:47Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
既存の特徴から予測器を学習するためのよりシンプルな手法を考案することは、将来の研究にとって有望な方向である、と我々は主張する。
本稿では,線形予測器を学習するための凸目標である領域調整回帰(DARE)を紹介する。
自然モデルの下では、DARE解が制限されたテスト分布の集合に対する最小最適予測器であることを証明する。
論文 参考訳(メタデータ) (2022-02-14T16:42:16Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
ロングテール認識は、現実世界のシナリオにおける自然な非一様分散データに取り組む。
モダンは人口密度の高いクラスではうまく機能するが、そのパフォーマンスはテールクラスでは著しく低下する。
Deep-RTCは、リアリズムと階層的予測を組み合わせたロングテール問題の新しい解法として提案されている。
論文 参考訳(メタデータ) (2020-07-20T05:57:42Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
事前学習されたトランスモデルの微調整は、一般的なNLPタスクを解決するための標準的なアプローチとなっている。
そこで本研究では,可視性ランキングタスクをフルテキスト形式でキャストする新たなスコアリング手法を提案する。
提案手法は, ランダム再起動にまたがって, より安定した学習段階を提供することを示す。
論文 参考訳(メタデータ) (2020-04-29T10:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。