論文の概要: Bridging the Resource Gap: Deploying Advanced Imitation Learning Models onto Affordable Embedded Platforms
- arxiv url: http://arxiv.org/abs/2411.11406v1
- Date: Mon, 18 Nov 2024 09:28:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:26.882801
- Title: Bridging the Resource Gap: Deploying Advanced Imitation Learning Models onto Affordable Embedded Platforms
- Title(参考訳): リソースギャップのブリッジ: 拡張可能な組み込みプラットフォームに高度な模倣学習モデルをデプロイする
- Authors: Haizhou Ge, Ruixiang Wang, Zhu-ang Xu, Hongrui Zhu, Ruichen Deng, Yuhang Dong, Zeyu Pang, Guyue Zhou, Junyu Zhang, Lu Shi,
- Abstract要約: 先進的な模倣学習アルゴリズムのエッジデバイスへの移行を容易にするパイプラインを提案する。
提案するパイプラインの効率性を示すため,大規模な模倣学習モデルがサーバ上で訓練され,エッジデバイス上に展開され,様々な操作処理が完了する。
- 参考スコア(独自算出の注目度): 13.488752211167533
- License:
- Abstract: Advanced imitation learning with structures like the transformer is increasingly demonstrating its advantages in robotics. However, deploying these large-scale models on embedded platforms remains a major challenge. In this paper, we propose a pipeline that facilitates the migration of advanced imitation learning algorithms to edge devices. The process is achieved via an efficient model compression method and a practical asynchronous parallel method Temporal Ensemble with Dropped Actions (TEDA) that enhances the smoothness of operations. To show the efficiency of the proposed pipeline, large-scale imitation learning models are trained on a server and deployed on an edge device to complete various manipulation tasks.
- Abstract(参考訳): トランスフォーマーのような構造を持つ高度な模倣学習は、ロボット工学におけるその優位性をますます証明している。
しかし、これらの大規模なモデルを組み込みプラットフォームにデプロイすることは大きな課題である。
本稿では,先進的な模倣学習アルゴリズムのエッジデバイスへの移行を容易にするパイプラインを提案する。
このプロセスは、効率的なモデル圧縮法と実用的な非同期並列手法であるTemporal Ensemble with Dropped Actions (TEDA)によって実現され、操作の滑らかさを高める。
提案するパイプラインの効率性を示すため,大規模な模倣学習モデルがサーバ上で訓練され,エッジデバイス上に展開され,様々な操作処理が完了する。
関連論文リスト
- DODT: Enhanced Online Decision Transformer Learning through Dreamer's Actor-Critic Trajectory Forecasting [37.334947053450996]
本稿では,Dreamerアルゴリズムの予測軌道生成能力とオンライン決定変換器の適応強度を組み合わせた新しい手法を提案する。
提案手法は,Dreamer-produced trajectories が変換器の文脈決定を促進させる並列学習を可能にする。
論文 参考訳(メタデータ) (2024-10-15T07:27:56Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
本稿では,視覚言語モデルを用いた漸進的学習における長期的忘れを緩和するパラメータ効率の連続学習フレームワークを提案する。
提案手法では,Mixture-of-Experts (MoE)アダプタの統合により,事前学習したCLIPモデルの動的拡張を行う。
視覚言語モデルのゼロショット認識能力を維持するために,分布判別オートセレクタを提案する。
論文 参考訳(メタデータ) (2024-03-18T08:00:23Z) - ATOM: Asynchronous Training of Massive Models for Deep Learning in a Decentralized Environment [7.916080032572087]
Atomは、分散化された環境で巨大なモデルの非同期トレーニング用に設計された、レジリエントな分散トレーニングフレームワークである。
atomは、スワップをシームレスにモデルし、トレーニングスループットを最適化するために複数のコピーを同時にトレーニングすることで、1つのホスト(ピア)に完全なLLMを適合させることを目的としている。
異なるGPT-3モデル構成を用いて実験したところ、最適ネットワーク接続のシナリオでは、原子は最先端の分散パイプライン並列化アプローチを組み込んだ場合、トレーニング効率を最大20倍に向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:43:43Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AIは、大規模モデルで最大2.76回のトレーニングスピードアップを達成することができる。
システムは、データ、パイプライン、テンソル、シーケンス並列化などの並列トレーニングメソッドをサポートする。
論文 参考訳(メタデータ) (2021-10-28T04:45:55Z) - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [91.05073136215886]
「Actor-Learner Distillation」は、大容量学習者モデルから小容量学習者モデルへ学習の進捗を移す。
Actor-Learner Distillation を用いて,トランスフォーマー学習モデルの明確なサンプル効率向上を再現する,いくつかの挑戦的なメモリ環境を実証する。
論文 参考訳(メタデータ) (2021-04-04T17:56:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。