論文の概要: Unveiling the Inflexibility of Adaptive Embedding in Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2411.11448v1
- Date: Mon, 18 Nov 2024 10:30:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:04.526037
- Title: Unveiling the Inflexibility of Adaptive Embedding in Traffic Forecasting
- Title(参考訳): 交通予報における適応型埋め込みの非フレキシブル化
- Authors: Hongjun Wang, Jiyuan Chen, Lingyu Zhang, Renhe Jiang, Xuan Song,
- Abstract要約: 急速な都市化は交通パターンや旅行需要の動的変化をもたらし、正確な長期交通予測の大きな課題となっている。
我々は,既存のST-GNNの性能劣化を,拡張トラヒックベンチマークで評価し,その性能劣化を観測した。
本稿では,モデルが再学習せずに新たなシナリオに適応可能なPCA(Principal Component Analysis)の組込み手法を提案する。
- 参考スコア(独自算出の注目度): 9.818230821091184
- License:
- Abstract: Spatiotemporal Graph Neural Networks (ST-GNNs) and Transformers have shown significant promise in traffic forecasting by effectively modeling temporal and spatial correlations. However, rapid urbanization in recent years has led to dynamic shifts in traffic patterns and travel demand, posing major challenges for accurate long-term traffic prediction. The generalization capability of ST-GNNs in extended temporal scenarios and cross-city applications remains largely unexplored. In this study, we evaluate state-of-the-art models on an extended traffic benchmark and observe substantial performance degradation in existing ST-GNNs over time, which we attribute to their limited inductive capabilities. Our analysis reveals that this degradation stems from an inability to adapt to evolving spatial relationships within urban environments. To address this limitation, we reconsider the design of adaptive embeddings and propose a Principal Component Analysis (PCA) embedding approach that enables models to adapt to new scenarios without retraining. We incorporate PCA embeddings into existing ST-GNN and Transformer architectures, achieving marked improvements in performance. Notably, PCA embeddings allow for flexibility in graph structures between training and testing, enabling models trained on one city to perform zero-shot predictions on other cities. This adaptability demonstrates the potential of PCA embeddings in enhancing the robustness and generalization of spatiotemporal models.
- Abstract(参考訳): 時空間相関を効果的にモデル化することにより、時空間グラフニューラルネットワーク(ST-GNN)とトランスフォーマーは交通予測において有意な可能性を示唆している。
しかし、近年の急速な都市化は交通パターンや旅行需要の動的変化を招き、正確な長期交通予測の大きな課題となっている。
拡張時間シナリオと都市間アプリケーションにおけるST-GNNの一般化能力は、まだ明らかにされていない。
本研究では,既存のST-GNNの性能劣化を時間とともに観測し,その限定的な帰納的性能を考慮に入れた。
分析の結果, この劣化は都市環境における空間的関係の発達に適応できないことが示唆された。
この制限に対処するため、適応的な埋め込みの設計を再考し、モデルが再訓練することなく新しいシナリオに適応できる主成分分析(PCA)埋め込み手法を提案する。
既存のST-GNN と Transformer アーキテクチャに PCA の埋め込みを組み込むことで,性能が大幅に向上した。
特にPCA埋め込みは、トレーニングとテストの間のグラフ構造の柔軟性を可能にし、ある都市でトレーニングされたモデルが他の都市でゼロショット予測を行うことを可能にする。
この適応性は、時空間モデルの堅牢性と一般化を高めるためのPCA埋め込みの可能性を示す。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - TEAM: Topological Evolution-aware Framework for Traffic Forecasting--Extended Version [24.544665297938437]
交通予測のためのトポロジカル進化認識フレームワーク(TEAM)には、畳み込みと注意が組み込まれている。
TEAMは、予測精度を損なうことなく、既存の方法よりもはるかに低い再訓練コストを削減できる。
論文 参考訳(メタデータ) (2024-10-24T22:50:21Z) - DST-TransitNet: A Dynamic Spatio-Temporal Deep Learning Model for Scalable and Efficient Network-Wide Prediction of Station-Level Transit Ridership [12.6020349733674]
本稿では,システムワイドライダーシップ予測のためのハイブリッドディープラーニングモデルであるDST-TransitNetを紹介する。
ボゴタのBRTシステムデータでテストされており、3つの異なる社会的シナリオがある。
最先端のモデルを精度、効率、堅牢性で上回る。
論文 参考訳(メタデータ) (2024-10-19T06:59:39Z) - STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting [11.208740750755025]
交通はスマートシティマネジメントの基盤であり、効率的なアロケーションと交通計画を可能にしている。
ディープラーニングは、データの複雑な非線形パターンをキャプチャする能力を持ち、トラフィック予測の強力なツールとして登場した。
グラフニューラルネットワーク(GCN)とトランスフォーマーベースのモデルは、将来性を示しているが、その計算要求はしばしば、現実のネットワークへの応用を妨げる。
本稿では,管理可能な計算フットプリントを維持しつつ,グローバルおよびローカルの両方のトラフィックパターンの効率的なモデリングを可能にする新しいテンポラルグラフトランスフォーマー(STG)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-01T04:15:48Z) - Robust Traffic Forecasting against Spatial Shift over Years [11.208740750755025]
新たに提案したトラフィックOODベンチマークを用いて,時空間技術モデルについて検討する。
これらのモデルのパフォーマンスが著しく低下していることが分かりました。
そこで我々は,学習中にグラフ生成器の集合を学習し,それらを組み合わせて新しいグラフを生成するMixture Expertsフレームワークを提案する。
我々の手法は相似的かつ有効であり、任意の時間モデルにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-10-01T03:49:29Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - ST-MLP: A Cascaded Spatio-Temporal Linear Framework with
Channel-Independence Strategy for Traffic Forecasting [47.74479442786052]
時空間グラフニューラルネットワーク(STGNN)に関する現在の研究は、しばしば複雑な設計を優先し、精度をわずかに向上させるだけで計算負荷を発生させる。
マルチ層パーセプトロン(MLP)モジュールと線形層のみをベースとした,簡潔な時空間モデルST-MLPを提案する。
実験の結果,ST-MLPは最先端STGNNと他のモデルよりも精度と計算効率の点で優れていた。
論文 参考訳(メタデータ) (2023-08-14T23:34:59Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。