Structure learning with Temporal Gaussian Mixture for model-based Reinforcement Learning
- URL: http://arxiv.org/abs/2411.11511v1
- Date: Mon, 18 Nov 2024 12:16:03 GMT
- Title: Structure learning with Temporal Gaussian Mixture for model-based Reinforcement Learning
- Authors: Théophile Champion, Marek Grześ, Howard Bowman,
- Abstract summary: We propose a temporal Gaussian Mixture Model composed of a perception model and a transition model.
The perception model extracts discrete (latent) states from continuous observations using a variational Gaussian mixture likelihood.
The transition model learns the temporal transition between consecutive time steps by taking advantage of the Dirichlet-categorical conjugacy.
Finally, decision making is performed with a variant of Q-learning which is able to learn Q-values from beliefs over states.
- Score: 0.9217021281095907
- License:
- Abstract: Model-based reinforcement learning refers to a set of approaches capable of sample-efficient decision making, which create an explicit model of the environment. This model can subsequently be used for learning optimal policies. In this paper, we propose a temporal Gaussian Mixture Model composed of a perception model and a transition model. The perception model extracts discrete (latent) states from continuous observations using a variational Gaussian mixture likelihood. Importantly, our model constantly monitors the collected data searching for new Gaussian components, i.e., the perception model performs a form of structure learning (Smith et al., 2020; Friston et al., 2018; Neacsu et al., 2022) as it learns the number of Gaussian components in the mixture. Additionally, the transition model learns the temporal transition between consecutive time steps by taking advantage of the Dirichlet-categorical conjugacy. Both the perception and transition models are able to forget part of the data points, while integrating the information they provide within the prior, which ensure fast variational inference. Finally, decision making is performed with a variant of Q-learning which is able to learn Q-values from beliefs over states. Empirically, we have demonstrated the model's ability to learn the structure of several mazes: the model discovered the number of states and the transition probabilities between these states. Moreover, using its learned Q-values, the agent was able to successfully navigate from the starting position to the maze's exit.
Related papers
- Bayesian Learning of Coupled Biogeochemical-Physical Models [28.269731698116257]
Predictive models for marine ecosystems are used for a variety of needs.
Due to sparse measurements and limited understanding of the myriad of ocean processes, there is significant uncertainty.
We develop a Bayesian model learning methodology that allows handling in the space of candidate models and discovery of new models.
arXiv Detail & Related papers (2022-11-12T17:49:18Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
We introduce a fundamentally different method for transferring knowledge across models that amounts to "merging" multiple models into one.
Our approach effectively involves computing a weighted average of the models' parameters.
We show that our merging procedure makes it possible to combine models in previously unexplored ways.
arXiv Detail & Related papers (2021-11-18T17:59:35Z) - Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet
Process [15.350366047108103]
Recent research efforts in lifelong learning propose to grow a mixture of models to adapt to an increasing number of tasks.
We perform the theoretical analysis for lifelong learning models by deriving the risk bounds based on the discrepancy distance between the probabilistic representation of data.
Inspired by the theoretical analysis, we introduce a new lifelong learning approach, namely the Lifelong Infinite Mixture (LIMix) model.
arXiv Detail & Related papers (2021-08-25T21:06:20Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Gaussian Function On Response Surface Estimation [12.35564140065216]
We propose a new framework for interpreting (features and samples) black-box machine learning models via a metamodeling technique.
The metamodel can be estimated from data generated via a trained complex model by running the computer experiment on samples of data in the region of interest.
arXiv Detail & Related papers (2021-01-04T04:47:00Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.