論文の概要: Learning a Neural Association Network for Self-supervised Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2411.11514v1
- Date: Mon, 18 Nov 2024 12:22:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:51.339185
- Title: Learning a Neural Association Network for Self-supervised Multi-Object Tracking
- Title(参考訳): 自己教師型多対象追跡のためのニューラルネットワークの学習
- Authors: Shuai Li, Michael Burke, Subramanian Ramamoorthy, Juergen Gall,
- Abstract要約: 本稿では,多目的追跡のためのデータアソシエーションを自己管理的に学習するための新しいフレームワークを提案する。
実世界のシナリオでは、オブジェクトの動きが通常マルコフプロセスで表現できるという事実により、我々は、トラッキングのための検出を関連付けるためにニューラルネットワークをトレーニングする新しい期待(EM)アルゴリズムを提案する。
我々は,挑戦的なMOT17とMOT20データセットに対するアプローチを評価し,自己教師付きトラッカーと比較して最先端の結果を得る。
- 参考スコア(独自算出の注目度): 34.07776597698471
- License:
- Abstract: This paper introduces a novel framework to learn data association for multi-object tracking in a self-supervised manner. Fully-supervised learning methods are known to achieve excellent tracking performances, but acquiring identity-level annotations is tedious and time-consuming. Motivated by the fact that in real-world scenarios object motion can be usually represented by a Markov process, we present a novel expectation maximization (EM) algorithm that trains a neural network to associate detections for tracking, without requiring prior knowledge of their temporal correspondences. At the core of our method lies a neural Kalman filter, with an observation model conditioned on associations of detections parameterized by a neural network. Given a batch of frames as input, data associations between detections from adjacent frames are predicted by a neural network followed by a Sinkhorn normalization that determines the assignment probabilities of detections to states. Kalman smoothing is then used to obtain the marginal probability of observations given the inferred states, producing a training objective to maximize this marginal probability using gradient descent. The proposed framework is fully differentiable, allowing the underlying neural model to be trained end-to-end. We evaluate our approach on the challenging MOT17 and MOT20 datasets and achieve state-of-the-art results in comparison to self-supervised trackers using public detections. We furthermore demonstrate the capability of the learned model to generalize across datasets.
- Abstract(参考訳): 本稿では,多目的追跡のためのデータアソシエーションを自己管理的に学習するための新しいフレームワークを提案する。
完全教師付き学習手法は優れたトラッキング性能を実現することが知られているが、アイデンティティレベルのアノテーションの取得は面倒で時間を要する。
実世界のシナリオでは、物体の動きは通常マルコフのプロセスで表現されるので、時間的対応について事前の知識を必要とせず、ニューラルネットワークをトレーニングして追跡する予測最大化(EM)アルゴリズムを提案する。
提案手法のコアにはニューラルカルマンフィルタがあり、ニューラルネットワークによってパラメータ化された検出の関連性に基づいて観測モデルが設定されている。
入力としてフレームのバッチが与えられると、隣接フレームの検出間のデータ関連はニューラルネットワークによって予測され、続いて、状態に対する検出の割り当て確率を決定するシンクホーン正規化が続く。
カルマンの滑らか化は、推定された状態から得られる観測の限界確率を得るために使用され、勾配降下を用いたこの限界確率を最大化するための訓練目標が生成される。
提案されたフレームワークは完全に差別化可能で、基盤となるニューラルネットワークをエンドツーエンドでトレーニングすることができる。
課題であるMOT17とMOT20データセットに対する我々のアプローチを評価し、公開検出を用いた自己教師付きトラッカーと比較して最先端の結果を得る。
さらに、データセットをまたいで一般化する学習モデルの能力を実証する。
関連論文リスト
- Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
本研究では、認識タスクのための地域レベルの特徴表現を事前学習するための時間順述前文タスクであるTempOを提案する。
我々は各フレームを、オブジェクト検出やトラッキングシステムにとって自然な表現である、未順序な特徴ベクトルのセットで埋め込む。
BDD100K、nu Images、MOT17データセットの大規模な評価は、私たちのTempO事前学習アプローチがシングルフレームの自己教師型学習方法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-02-17T18:18:27Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
ニューラルネットワークの出力によってパラメータ化されたベイズ追跡・検出フレームワークにおける副次的問題について述べる。
本稿では,粒子フィルタを用いた物体状態推定のための近似サンプリングアルゴリズムを提案する。
粒子フィルタ推論アルゴリズムを用いて,間欠的なラベル付きフレーム上でのトラッキングネットワークの学習に半教師付き学習アルゴリズムを用いる。
論文 参考訳(メタデータ) (2022-05-05T00:18:57Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning data association without data association: An EM approach to
neural assignment prediction [12.970250708769708]
本稿では,データアソシエーションのためのニューラルモデルをトレーニングするための予測最大化手法を提案する。
オブジェクト認識のモデルをトレーニングするためにラベル情報を必要としない。
重要なことに、提案手法を用いてトレーニングされたネットワークは、下流追跡アプリケーションで再利用することができる。
論文 参考訳(メタデータ) (2021-05-02T01:11:09Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
本研究は,グラフに基づくデータ構造を用いて問題をモデル化する多目的追跡(MOT)への多くの従来のアプローチに従う。
複数のタイムステップにまたがるデータ関連問題を表す動的無方向性グラフに基づくフレームワークを作成する。
また、メモリ効率が高く、リアルタイムなオンラインアルゴリズムを作成するために対処する必要がある計算問題に対するソリューションと提案も提供します。
論文 参考訳(メタデータ) (2021-01-11T21:52:25Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
本稿では,インスタンスセグメンテーションネットワークの不確かさをモデル化するための時間動的手法を提案する。
本稿では,偽陽性の検出と予測品質の推定に本手法を適用した。
提案手法は、容易に訓練されたニューラルネットワークとビデオシーケンス入力のみを必要とする。
論文 参考訳(メタデータ) (2020-12-14T13:39:05Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。