論文の概要: Signaling and Social Learning in Swarms of Robots
- arxiv url: http://arxiv.org/abs/2411.11616v1
- Date: Mon, 18 Nov 2024 14:42:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:23.164018
- Title: Signaling and Social Learning in Swarms of Robots
- Title(参考訳): ロボットの群れにおける信号と社会学習
- Authors: Leo Cazenille, Maxime Toquebiau, Nicolas Lobato-Dauzier, Alessia Loi, Loona Macabre, Nathanael Aubert-Kato, Anthony Genot, Nicolas Bredeche,
- Abstract要約: 本稿では,ロボット群における協調性向上におけるコミュニケーションの役割について検討する。
クレジット代入問題に対処する上で,コミュニケーションが果たす役割を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper investigates the role of communication in improving coordination within robot swarms, focusing on a paradigm where learning and execution occur simultaneously in a decentralized manner. We highlight the role communication can play in addressing the credit assignment problem (individual contribution to the overall performance), and how it can be influenced by it. We propose a taxonomy of existing and future works on communication, focusing on information selection and physical abstraction as principal axes for classification: from low-level lossless compression with raw signal extraction and processing to high-level lossy compression with structured communication models. The paper reviews current research from evolutionary robotics, multi-agent (deep) reinforcement learning, language models, and biophysics models to outline the challenges and opportunities of communication in a collective of robots that continuously learn from one another through local message exchanges, illustrating a form of social learning.
- Abstract(参考訳): 本稿では,ロボット群における協調性向上におけるコミュニケーションの役割を考察し,学習と実行を同時に分散的に行うパラダイムに着目した。
我々は、信用割当問題(全体のパフォーマンスへの個人的貢献)に対処する上で、コミュニケーションが果たす役割と、それの影響について強調する。
本稿では,情報選択と物理抽象化を主軸とするコミュニケーション研究の分類法を提案する。 生信号抽出処理による低レベルロスレス圧縮から構造化通信モデルによる高レベルロスレス圧縮まで。
この論文は、進化的ロボット工学、多エージェント(深層)強化学習、言語モデル、および生物物理学モデルからの最近の研究をレビューし、社会学習の一形態を説明するために、互いに継続的に学習するロボット集団におけるコミュニケーションの課題と機会を概説する。
関連論文リスト
- Generative AI Meets Semantic Communication: Evolution and Revolution of
Communication Tasks [41.64537121421164]
セマンティックコミュニケーションにおける深層生成モデルの統一的な視点を示す。
我々は、将来のコミュニケーションフレームワークにおける彼らの革命的な役割を明らかにし、新しいアプリケーションやタスクを可能にします。
論文 参考訳(メタデータ) (2024-01-10T09:56:36Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
社会学習は、専門家からのヒントを使って、異質なポリシーを整列し、サンプルの複雑さを減らし、部分的に観察可能なタスクを解決する。
本稿では,情報ボトルネックに基づく教師なし手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T03:23:27Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Curriculum-Driven Multi-Agent Learning and the Role of Implicit
Communication in Teamwork [24.92668968807012]
難解なマルチエージェントコーディネーションタスクを解決するためのカリキュラム駆動型学習戦略を提案する。
我々は、創発的な暗黙のコミュニケーションが、優れた調整レベルを実現する上で大きな役割を果たすと主張している。
論文 参考訳(メタデータ) (2021-06-21T14:54:07Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Reinforcement Learning Approaches in Social Robotics [3.9523548427618067]
本稿では,ソーシャルロボティクスにおける強化学習のアプローチについて調査する。
インタラクションは強化学習とソーシャルロボティクスの両方において重要な要素であるため、物理的に具体化されたソーシャルロボティクスとの現実世界のインタラクションには適している。
論文 参考訳(メタデータ) (2020-09-21T08:56:18Z) - Who2com: Collaborative Perception via Learnable Handshake Communication [34.29310680302486]
本稿では,ロボットが周囲のエージェントと局所的な観察を組み合わせて学習可能な方法で認識タスクの精度を向上する,協調的知覚の問題を提案する。
ネットワーク通信プロトコルにヒントを得た多段階ハンドシェイク通信機構を提案する。
セマンティックセグメンテーションタスクにおいて、ハンドシェイク通信方式は、分散ベースラインよりも約20%精度が向上し、帯域幅の4分の1を使用した集中型セグメンテーションに匹敵することを示す。
論文 参考訳(メタデータ) (2020-03-21T04:16:22Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。