論文の概要: Reinforcement Learning Approaches in Social Robotics
- arxiv url: http://arxiv.org/abs/2009.09689v4
- Date: Thu, 11 Feb 2021 16:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 05:25:51.102131
- Title: Reinforcement Learning Approaches in Social Robotics
- Title(参考訳): ソーシャルロボティクスにおける強化学習アプローチ
- Authors: Neziha Akalin and Amy Loutfi
- Abstract要約: 本稿では,ソーシャルロボティクスにおける強化学習のアプローチについて調査する。
インタラクションは強化学習とソーシャルロボティクスの両方において重要な要素であるため、物理的に具体化されたソーシャルロボティクスとの現実世界のインタラクションには適している。
- 参考スコア(独自算出の注目度): 3.9523548427618067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article surveys reinforcement learning approaches in social robotics.
Reinforcement learning is a framework for decision-making problems in which an
agent interacts through trial-and-error with its environment to discover an
optimal behavior. Since interaction is a key component in both reinforcement
learning and social robotics, it can be a well-suited approach for real-world
interactions with physically embodied social robots. The scope of the paper is
focused particularly on studies that include social physical robots and
real-world human-robot interactions with users. We present a thorough analysis
of reinforcement learning approaches in social robotics. In addition to a
survey, we categorize existent reinforcement learning approaches based on the
used method and the design of the reward mechanisms. Moreover, since
communication capability is a prominent feature of social robots, we discuss
and group the papers based on the communication medium used for reward
formulation. Considering the importance of designing the reward function, we
also provide a categorization of the papers based on the nature of the reward.
This categorization includes three major themes: interactive reinforcement
learning, intrinsically motivated methods, and task performance-driven methods.
The benefits and challenges of reinforcement learning in social robotics,
evaluation methods of the papers regarding whether or not they use subjective
and algorithmic measures, a discussion in the view of real-world reinforcement
learning challenges and proposed solutions, the points that remain to be
explored, including the approaches that have thus far received less attention
is also given in the paper. Thus, this paper aims to become a starting point
for researchers interested in using and applying reinforcement learning methods
in this particular research field.
- Abstract(参考訳): 本稿では,ソーシャルロボティクスにおける強化学習のアプローチについて調査する。
強化学習は、エージェントがその環境と試行錯誤によって最適な行動を発見するために相互作用する意思決定問題のためのフレームワークである。
インタラクションは強化学習とソーシャルロボティクスの両方において重要な要素であるため、物理的に具体化されたソーシャルロボットとの現実世界のインタラクションに適したアプローチとなる可能性がある。
論文のスコープは特に、ソーシャルな物理的ロボットや現実世界の人間とロボットの対話などの研究に焦点を当てている。
本稿では,ソーシャルロボティクスにおける強化学習のアプローチを徹底的に分析する。
そこで,本研究では,使用方法と報酬機構の設計に基づいて,既存の強化学習アプローチを分類する。
さらに,コミュニケーション能力は社会ロボットの特長であるため,報酬の定式化に使用されるコミュニケーション媒体に基づいて論文を論じ,グループ化する。
また,報奨機能の設計の重要性を考慮し,報奨機能の性質に基づく論文の分類も提供する。
この分類には、インタラクティブな強化学習、本質的な動機付け手法、タスクパフォーマンス駆動手法の3つの主要なテーマが含まれる。
社会ロボット工学における強化学習の利点と課題、彼らが主観的およびアルゴリズム的手法を使うかどうかに関する論文の評価方法、現実世界の強化学習課題と提案する解決策の観点からの議論、これまでにあまり注目されていないアプローチを含む、まだ検討中のポイントも論文で示されている。
そこで本研究では,本研究分野における強化学習手法の活用と応用に関心を持つ研究者の出発点となることを目的とする。
関連論文リスト
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
オブジェクト中心のロボット操作のための身体学習は、AIの急速に発展し、挑戦的な分野である。
データ駆動機械学習とは異なり、具体化学習は環境との物理的相互作用を通じてロボット学習に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-21T11:32:09Z) - Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
本研究では,感情言語コミュニケーションが人間ロボットの文脈における相互学習にどのように影響するかを検証する。
児童介護のダイナミックスからインスピレーションを得て、私たちの人間とロボットのインタラクションのセットアップは、内部的、ホメオスタティックに制御されたニーズのコミュニケーション方法を学ぶための(シミュレートされた)ロボットで構成されています。
論文 参考訳(メタデータ) (2024-07-01T13:35:08Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - A Concise Introduction to Reinforcement Learning in Robotics [0.0]
本稿では,ロボット工学分野に応用された強化学習の研究者のためのリファレンスガイドとして機能することを目的とする。
我々は、ロボット工学を念頭に置いて、強化学習の分野の研究に必要な最も重要な概念を取り上げてきた。
論文 参考訳(メタデータ) (2022-10-13T22:29:42Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
社会的ナビゲーションモデルは、差別や差別のような社会的不公平を複製し、促進し、増幅することができる。
提案するフレームワークは,安全性と快適性を考慮したソーシャルコンテキストを学習プロセスに組み込んだtextitlearningと,発生前に潜在的に有害な結果を検出し修正するtextitrelearningの2つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2021-01-07T17:42:35Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - Towards hybrid primary intersubjectivity: a neural robotics library for
human science [4.232614032390374]
主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観
本研究では,人-ロボットインタラクション実験のためのオープンソース手法であるテクスチュラルロボティクスライブラリ(NRL)を提案する。
人-ロボット間(ハイブリッド)が人間の科学研究に寄与する方法について論じる。
論文 参考訳(メタデータ) (2020-06-29T11:35:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。