FERT: Real-Time Facial Expression Recognition with Short-Range FMCW Radar
- URL: http://arxiv.org/abs/2411.11619v1
- Date: Mon, 18 Nov 2024 14:48:06 GMT
- Title: FERT: Real-Time Facial Expression Recognition with Short-Range FMCW Radar
- Authors: Sabri Mustafa Kahya, Muhammet Sami Yavuz, Eckehard Steinbach,
- Abstract summary: This study proposes a novel approach for real-time facial expression recognition utilizing short-range Frequency-Modulated Continuous-Wave (FMCW) radar equipped with one transmit (Tx), and three receive (Rx) antennas.
The proposed solution operates in real-time in a person-independent manner, which shows the potential use of low-cost FMCW radars for effective facial expression recognition in various applications.
- Score: 0.0
- License:
- Abstract: This study proposes a novel approach for real-time facial expression recognition utilizing short-range Frequency-Modulated Continuous-Wave (FMCW) radar equipped with one transmit (Tx), and three receive (Rx) antennas. The system leverages four distinct modalities simultaneously: Range-Doppler images (RDIs), micro range-Doppler Images (micro-RDIs), range azimuth images (RAIs), and range elevation images (REIs). Our innovative architecture integrates feature extractor blocks, intermediate feature extractor blocks, and a ResNet block to accurately classify facial expressions into smile, anger, neutral, and no-face classes. Our model achieves an average classification accuracy of 98.91% on the dataset collected using a 60 GHz short-range FMCW radar. The proposed solution operates in real-time in a person-independent manner, which shows the potential use of low-cost FMCW radars for effective facial expression recognition in various applications.
Related papers
- Enabling Visual Recognition at Radio Frequency [13.399148413043411]
PanoRadar is a novel RF imaging system that brings RF resolution close to that of LiDAR.
Results enable, for the first time, a variety of visual recognition tasks at radio frequency.
Our results demonstrate PanoRadar's robust performance across 12 buildings.
arXiv Detail & Related papers (2024-05-29T20:52:59Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - DART: Implicit Doppler Tomography for Radar Novel View Synthesis [9.26298115522881]
DART is a Neural Radiance Field-inspired method which uses radar-specific physics to create a reflectance and transmittance-based rendering pipeline for range-Doppler images.
In comparison to state-of-the-art baselines, DART synthesizes superior radar range-Doppler images from novel views across all datasets.
arXiv Detail & Related papers (2024-03-06T17:54:50Z) - Frequency Domain Nuances Mining for Visible-Infrared Person
Re-identification [75.87443138635432]
Existing methods mainly exploit the spatial information while ignoring the discriminative frequency information.
We propose a novel Frequency Domain Nuances Mining (FDNM) method to explore the cross-modality frequency domain information.
Our method outperforms the second-best method by 5.2% in Rank-1 accuracy and 5.8% in mAP on the SYSU-MM01 dataset.
arXiv Detail & Related papers (2024-01-04T09:19:54Z) - Multi-stage Learning for Radar Pulse Activity Segmentation [51.781832424705094]
Radio signal recognition is a crucial function in electronic warfare.
Precise identification and localisation of radar pulse activities are required by electronic warfare systems.
Deep learning-based radar pulse activity recognition methods have remained largely underexplored.
arXiv Detail & Related papers (2023-12-15T01:56:27Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Enhancing Reliability in Federated mmWave Networks: A Practical and
Scalable Solution using Radar-Aided Dynamic Blockage Recognition [14.18507067281377]
This article introduces a new method to improve the dependability of millimeter-wave (mmWave) and terahertz (THz) network services in dynamic outdoor environments.
In these settings, line-of-sight (LoS) connections are easily interrupted by moving obstacles like humans and vehicles.
The proposed approach, coined as Radar-aided blockage Dynamic Recognition (RaDaR), leverages radar measurements and federated learning (FL) to train a dual-output neural network (NN) model.
arXiv Detail & Related papers (2023-06-22T10:10:25Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - RadarLoc: Learning to Relocalize in FMCW Radar [36.68888832365474]
We propose a novel end-to-end neural network with self-attention, termed RadarLoc, which is able to estimate 6-DoF global poses directly.
We validate our approach on the recently released challenging outdoor dataset Oxford Radar RobotCar.
arXiv Detail & Related papers (2021-03-22T03:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.