UWB Radar-based Heart Rate Monitoring: A Transfer Learning Approach
- URL: http://arxiv.org/abs/2507.14195v1
- Date: Mon, 14 Jul 2025 11:45:57 GMT
- Title: UWB Radar-based Heart Rate Monitoring: A Transfer Learning Approach
- Authors: Elzbieta Gruzewska, Pooja Rao, Sebastien Baur, Matthew Baugh, Mathias M. J. Bellaiche, Sharanya Srinivas, Octavio Ponce, Matthew Thompson, Pramod Rudrapatna, Michael A. Sanchez, Lawrence Z. Cai, Timothy JA Chico, Robert F. Storey, Emily Maz, Umesh Telang, Shravya Shetty, Mayank Daswani,
- Abstract summary: This study demonstrates transfer learning between frequency-modulated continuous wave (FMCW) and impulse-radio ultra-wideband (IR-UWB) radar systems.<n>Using a novel 2D+1D ResNet architecture we achieved a mean absolute error (MAE) of 0.85 bpm and a mean absolute percentage error (MAPE) of 1.42% for heart rate monitoring with FMCW radar.
- Score: 0.6236828594667636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radar technology presents untapped potential for continuous, contactless, and passive heart rate monitoring via consumer electronics like mobile phones. However the variety of available radar systems and lack of standardization means that a large new paired dataset collection is required for each radar system. This study demonstrates transfer learning between frequency-modulated continuous wave (FMCW) and impulse-radio ultra-wideband (IR-UWB) radar systems, both increasingly integrated into consumer devices. FMCW radar utilizes a continuous chirp, while IR-UWB radar employs short pulses. Our mm-wave FMCW radar operated at 60 GHz with a 5.5 GHz bandwidth (2.7 cm resolution, 3 receiving antennas [Rx]), and our IR-UWB radar at 8 GHz with a 500 MHz bandwidth (30 cm resolution, 2 Rx). Using a novel 2D+1D ResNet architecture we achieved a mean absolute error (MAE) of 0.85 bpm and a mean absolute percentage error (MAPE) of 1.42% for heart rate monitoring with FMCW radar (N=119 participants, an average of 8 hours per participant). This model maintained performance (under 5 MAE/10% MAPE) across various body positions and heart rate ranges, with a 98.9% recall. We then fine-tuned a variant of this model, trained on single-antenna and single-range bin FMCW data, using a small (N=376, avg 6 minutes per participant) IR-UWB dataset. This transfer learning approach yielded a model with MAE 4.1 bpm and MAPE 6.3% (97.5% recall), a 25% MAE reduction over the IR-UWB baseline. This demonstration of transfer learning between radar systems for heart rate monitoring has the potential to accelerate its introduction into existing consumer devices.
Related papers
- DRO: Doppler-Aware Direct Radar Odometry [11.042292216861762]
A renaissance in radar-based sensing for mobile robotic applications is underway.<n>We propose a novel SE(2) odometry approach for spinning frequency-modulated continuous-wave radars.<n>Our method has been validated on over 250km of on-road data sourced from public datasets.
arXiv Detail & Related papers (2025-04-29T01:20:30Z) - RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.<n>Radar suffers from noise and positional ambiguity.<n>We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - FERT: Real-Time Facial Expression Recognition with Short-Range FMCW Radar [0.0]
This study proposes a novel approach for real-time facial expression recognition utilizing short-range Frequency-Modulated Continuous-Wave (FMCW) radar equipped with one transmit (Tx), and three receive (Rx) antennas.
The proposed solution operates in real-time in a person-independent manner, which shows the potential use of low-cost FMCW radars for effective facial expression recognition in various applications.
arXiv Detail & Related papers (2024-11-18T14:48:06Z) - radarODE: An ODE-Embedded Deep Learning Model for Contactless ECG Reconstruction from Millimeter-Wave Radar [16.52097542165782]
A novel deep learning framework called radarODE is designed to fuse the temporal and morphological features extracted from radar signals and generate ECG.<n> radarODE achieves better performance compared with the benchmark in terms of missed detection rate, root mean square error, Pearson correlation coefficient with the improvement of 9%, 16% and 19%, respectively.
arXiv Detail & Related papers (2024-08-03T06:07:15Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Multi-stage Learning for Radar Pulse Activity Segmentation [51.781832424705094]
Radio signal recognition is a crucial function in electronic warfare.
Precise identification and localisation of radar pulse activities are required by electronic warfare systems.
Deep learning-based radar pulse activity recognition methods have remained largely underexplored.
arXiv Detail & Related papers (2023-12-15T01:56:27Z) - Timely Fusion of Surround Radar/Lidar for Object Detection in Autonomous Driving Systems [13.998883144668941]
Fusing Radar and Lidar sensor data can fully utilize their complementary advantages and provide more accurate reconstruction of the surrounding.
Existing Radar/Lidar fusion methods have to work at the low frequency of surround Radar.
This paper develops techniques to fuse surround Radar/Lidar with working frequency only limited by the faster surround Lidar.
arXiv Detail & Related papers (2023-09-09T14:22:12Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.