SpINR: Neural Volumetric Reconstruction for FMCW Radars
- URL: http://arxiv.org/abs/2503.23313v2
- Date: Fri, 25 Apr 2025 15:33:19 GMT
- Title: SpINR: Neural Volumetric Reconstruction for FMCW Radars
- Authors: Harshvardhan Takawale, Nirupam Roy,
- Abstract summary: We introduce SpINR, a novel framework for volumetric reconstruction using Frequency-Modulated Continuous-Wave (FMCW) radar data.<n>We demonstrate that SpINR significantly outperforms classical backprojection methods and existing learning-based approaches.
- Score: 0.15193212081459279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce SpINR, a novel framework for volumetric reconstruction using Frequency-Modulated Continuous-Wave (FMCW) radar data. Traditional radar imaging techniques, such as backprojection, often assume ideal signal models and require dense aperture sampling, leading to limitations in resolution and generalization. To address these challenges, SpINR integrates a fully differentiable forward model that operates natively in the frequency domain with implicit neural representations (INRs). This integration leverages the linear relationship between beat frequency and scatterer distance inherent in FMCW radar systems, facilitating more efficient and accurate learning of scene geometry. Additionally, by computing outputs for only the relevant frequency bins, our forward model achieves greater computational efficiency compared to time-domain approaches that process the entire signal before transformation. Through extensive experiments, we demonstrate that SpINR significantly outperforms classical backprojection methods and existing learning-based approaches, achieving higher resolution and more accurate reconstructions of complex scenes. This work represents the first application of neural volumetic reconstruction in the radar domain, offering a promising direction for future research in radar-based imaging and perception systems.
Related papers
- Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.
multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.
Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - Range and Angle Estimation with Spiking Neural Resonators for FMCW Radar [16.91912935835324]
Automotive radar systems face the challenge of managing high sampling rates and large data bandwidth.<n>Neuromorphic computing offers promising solutions because of its inherent energy efficiency and parallel processing capacity.<n>This research presents a novel spiking neuron model for signal processing of frequency-modulated continuous wave (FMCW) radars.
arXiv Detail & Related papers (2025-03-02T13:51:03Z) - Neural Reflectance Fields for Radio-Frequency Ray Tracing [12.517163884907433]
Ray tracing is widely employed to model the propagation of radio-frequency (RF) signal in complex environment.
We tackle this problem by learning the material reflectivity efficiently from the path loss of the RF signal from transmitters to receivers.
We achieve this by translating the neural reflectance field from optics to RF domain by modelling both the amplitude and phase of RF signals.
arXiv Detail & Related papers (2025-01-05T06:52:35Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - End-to-End Training of Neural Networks for Automotive Radar Interference
Mitigation [9.865041274657823]
We propose a new method for training neural networks (NNs) for frequency modulated continuous wave (WFMC) radar mutual interference mitigation.
Instead of training NNs to regress from interfered to clean radar signals as in previous work, we train NNs directly on object detection maps.
We do so by performing a continuous relaxation of the cell-averaging constant false alarm rate (CA-CFAR) peak detector, which is a well-established algorithm for object detection using radar.
arXiv Detail & Related papers (2023-12-15T13:47:16Z) - Deep learning-based deconvolution for interferometric radio transient
reconstruction [0.39259415717754914]
Radio astronomy facilities like LOFAR, MeerKAT/SKA, ASKAP/SKA, and the future SKA-LOW bring tremendous sensitivity in time and frequency.
These facilities enable advanced studies of radio transients, volatile by nature, that can be detected or missed in the data.
These transients are markers of high-energy accelerations of electrons and manifest in a wide range of temporal scales.
arXiv Detail & Related papers (2023-06-24T08:58:52Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
We propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without distances.
Our globally sparse and locally dense data structure exploits surfaces' spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data.
Experiments show that our approach is 10x faster in training and 100x faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.
arXiv Detail & Related papers (2023-05-22T16:50:19Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation.
We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods.
arXiv Detail & Related papers (2022-12-10T20:15:23Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.