論文の概要: Chapter 7 Review of Data-Driven Generative AI Models for Knowledge Extraction from Scientific Literature in Healthcare
- arxiv url: http://arxiv.org/abs/2411.11635v1
- Date: Mon, 18 Nov 2024 15:13:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:47.357082
- Title: Chapter 7 Review of Data-Driven Generative AI Models for Knowledge Extraction from Scientific Literature in Healthcare
- Title(参考訳): 第7章 医療科学文献からの知識抽出のためのデータ駆動生成AIモデルの検討
- Authors: Leon Kopitar, Primoz Kocbek, Lucija Gosak, Gregor Stiglic,
- Abstract要約: NLPに基づくテキスト要約手法の開発について概観する。
変換器(BERT)と生成事前学習器(GPT)からの双方向表現を示す。
- 参考スコア(独自算出の注目度): 1.1060196481444096
- License:
- Abstract: This review examines the development of abstractive NLP-based text summarization approaches and compares them to existing techniques for extractive summarization. A brief history of text summarization from the 1950s to the introduction of pre-trained language models such as Bidirectional Encoder Representations from Transformer (BERT) and Generative Pre-training Transformers (GPT) are presented. In total, 60 studies were identified in PubMed and Web of Science, of which 29 were excluded and 24 were read and evaluated for eligibility, resulting in the use of seven studies for further analysis. This chapter also includes a section with examples including an example of a comparison between GPT-3 and state-of-the-art GPT-4 solutions in scientific text summarisation. Natural language processing has not yet reached its full potential in the generation of brief textual summaries. As there are acknowledged concerns that must be addressed, we can expect gradual introduction of such models in practise.
- Abstract(参考訳): 本稿では,抽象的NLPに基づくテキスト要約手法の開発について検討し,既存の抽出的要約手法と比較する。
1950年代以降のテキスト要約の短い歴史と,変換器による双方向エンコーダ表現(BERT)や生成事前学習変換器(GPT)などの事前学習言語モデルの導入について述べる。
PubMedとWeb of Scienceでは合計60研究が特定され、そのうち29研究が除外され、24研究が可読性について評価され、7つの研究がさらなる分析に使用された。
本章は、科学テキスト要約におけるGPT-3と最先端のGPT-4ソリューションの比較例を含む例を含む節を含む。
自然言語処理は、短いテキスト要約の生成において、まだ大きな可能性を秘めていない。
対処すべき懸念が認識されているため、そのようなモデルの導入が徐々に実施されることを期待できる。
関連論文リスト
- State-of-the-art Advances of Deep-learning Linguistic Steganalysis Research [6.99735992267331]
本研究は,既存のコントリビューションを包括的にレビューし,発達軌跡の評価を行う。
まず、この分野とテキスト分類の領域の違いを比較しながら、言語ステガナリシスの一般式を公式化した。
既存の研究をベクトル空間マッピングと特徴抽出モデルに基づいて2つのレベルに分類し,研究の動機,モデルの利点,その他の詳細を比較検討した。
論文 参考訳(メタデータ) (2024-09-03T10:49:42Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
SciRIFF(Scientific Resource for Instruction-Following and Finetuning, SciRIFF)は、54のタスクに対して137Kの命令追従デモのデータセットである。
SciRIFFは、幅広い科学分野の研究文献から情報を抽出し、合成することに焦点を当てた最初のデータセットである。
論文 参考訳(メタデータ) (2024-06-10T21:22:08Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - GPT Struct Me: Probing GPT Models on Narrative Entity Extraction [2.049592435988883]
我々は,2つの最先端言語モデル(GPT-3とGPT-3.5)の物語の抽出能力を評価する。
本研究はポルトガルの119のニュース記事を集めたText2Story Lusaデータセットを用いて行った。
論文 参考訳(メタデータ) (2023-11-24T16:19:04Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Can GPT models Follow Human Summarization Guidelines? Evaluating ChatGPT
and GPT-4 for Dialogue Summarization [2.6321077922557192]
本研究は,対話要約のための人間のガイドラインに従う上で,ChatGPT や GPT-4 のようなプロンプト駆動型大規模言語モデル (LLM) の能力について検討する。
以上の結果から,GPTモデルは長大な要約を産出し,人間の要約ガイドラインから逸脱することが多いことが示唆された。
人間のガイドラインを中間的なステップとして使うと、約束が示され、いくつかのケースでは単語長の制約プロンプトよりも優れています。
論文 参考訳(メタデータ) (2023-10-25T17:39:07Z) - DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of
GPT-Generated Text [82.5469544192645]
ダイバージェントN-Gram解析(DNA-GPT)と呼ばれる新しいトレーニング不要検出手法を提案する。
元の部分と新しい部分の違いをN-gram解析により解析することにより,機械生成テキストと人文テキストの分布に顕著な相違が明らかになった。
その結果, ゼロショットアプローチは, 人文とGPT生成テキストの区別において, 最先端の性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-05-27T03:58:29Z) - Application of Transformers based methods in Electronic Medical Records:
A Systematic Literature Review [77.34726150561087]
本研究は,異なるNLPタスクにおける電子カルテ(EMR)のトランスフォーマーに基づく手法を用いて,最先端技術に関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-04-05T22:19:42Z) - Lay Text Summarisation Using Natural Language Processing: A Narrative
Literature Review [1.8899300124593648]
本研究の目的は, テキスト要約の手法を記述し, 比較することである。
私たちは82の記事をスクリーニングし、同じデータセットを使用して2020年から2021年の間に8つの関連論文を公開しました。
ハイブリッドアプローチにおける抽出的および抽象的要約法の組み合わせが最も有効であることが判明した。
論文 参考訳(メタデータ) (2023-03-24T18:30:50Z) - News Summarization and Evaluation in the Era of GPT-3 [73.48220043216087]
GPT-3は,大規模な要約データセット上で訓練された微調整モデルと比較する。
我々は,GPT-3サマリーが圧倒的に好まれるだけでなく,タスク記述のみを用いることで,現実性に乏しいようなデータセット固有の問題に悩まされることも示している。
論文 参考訳(メタデータ) (2022-09-26T01:04:52Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
Seq2Seqフレームワークによって開発されたニューラルエンコーダデコーダモデルは、より抽象的な要約を生成するという目標を達成するために提案されている。
高いレベルでは、そのようなニューラルネットワークは、使用される単語やフレーズに制約を加えることなく、自由に要約を生成することができる。
しかし、神経モデルの抽象化能力は二重刃の剣である。
論文 参考訳(メタデータ) (2021-04-30T08:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。