論文の概要: Bitcoin Under Volatile Block Rewards: How Mempool Statistics Can Influence Bitcoin Mining
- arxiv url: http://arxiv.org/abs/2411.11702v1
- Date: Mon, 18 Nov 2024 16:29:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:44.727904
- Title: Bitcoin Under Volatile Block Rewards: How Mempool Statistics Can Influence Bitcoin Mining
- Title(参考訳): Bitcoinの不安定なブロック:Mempool統計がBitcoinマイニングにどのように影響するか
- Authors: Roozbeh Sarenche, Alireza Aghabagherloo, Svetla Nikova, Bart Preneel,
- Abstract要約: Bitcoinがより半減期を経験するにつれて、プロトコル報酬はゼロに収束し、取引手数料がマイナー報酬の主要な源となる。
以前のBitcoinのセキュリティ分析では、固定ブロック報酬モデルまたは高度に単純化された揮発性モデルが検討されている。
本研究では,より現実的な揮発性モデルの下での鉱業戦略の分析を目的とした強化学習ツールを提案する。
- 参考スコア(独自算出の注目度): 5.893888881448058
- License:
- Abstract: As Bitcoin experiences more halving events, the protocol reward converges to zero, making transaction fees the primary source of miner rewards. This shift in Bitcoin's incentivization mechanism, which introduces volatility into block rewards, could lead to the emergence of new security threats or intensify existing ones. Previous security analyses of Bitcoin have either considered a fixed block reward model or a highly simplified volatile model, overlooking the complexities of Bitcoin's mempool behavior. In this paper, we present a reinforcement learning-based tool designed to analyze mining strategies under a more realistic volatile model. Our tool uses the Asynchronous Advantage Actor-Critic (A3C) algorithm to derive near-optimal mining strategies while interacting with an environment that models the complexity of the Bitcoin mempool. This tool enables the analysis of adversarial mining strategies, such as selfish mining and undercutting, both before and after difficulty adjustments, providing insights into the effects of mining attacks in both the short and long term. Our analysis reveals that Bitcoin users' trend of offering higher fees to speed up the inclusion of their transactions in the chain can incentivize payoff-maximizing miners to deviate from the honest strategy. In the fixed reward model, a disincentive for the selfish mining attack is the initial loss period of at least two weeks, during which the attack is not profitable. However, our analysis shows that once the protocol reward diminishes to zero in the future, or even currently on days when transaction fees are comparable to the protocol reward, mining pools might be incentivized to abandon honest mining to gain an immediate profit.
- Abstract(参考訳): Bitcoinがより半減なイベントを経験するにつれて、プロトコル報酬はゼロに収束し、取引手数料がマイナー報酬の主要な源となる。
Bitcoinのインセンティブ化メカニズムの変化は、ブロック報酬にボラティリティを導入し、新たなセキュリティ脅威が出現したり、既存のものを強化したりする可能性がある。
これまでのBitcoinのセキュリティ分析では、固定ブロック報酬モデルか、高度に単純化された揮発性モデルかが検討されており、Bitcoinのメムプール動作の複雑さを見下ろしている。
本稿では,より現実的な揮発性モデルの下での鉱業戦略の分析を目的とした強化学習ツールを提案する。
我々のツールは、Asynchronous Advantage Actor-Critic (A3C)アルゴリズムを使用して、Bitcoinメムプールの複雑さをモデル化した環境と相互作用しながら、最適に近いマイニング戦略を導出します。
このツールは、困難調整前後の利己的な採鉱や減産といった敵の採鉱戦略の分析を可能にし、短期的・長期的な採鉱の効果に関する洞察を提供する。
我々の分析によると、ビットコイン利用者は、取引をチェーンに組み込むのを早めるために高額な手数料を課す傾向が、正統な戦略から逸脱するために、支払いを最大化する鉱山労働者にインセンティブを与える可能性がある。
固定報酬モデルでは、自家用地雷攻撃の嫌悪感は少なくとも2週間の損失期間であり、攻撃が利益を得られない。
しかし、分析の結果、将来プロトコル報酬がゼロに減らされると、あるいは取引手数料がプロトコル報酬に匹敵する日でさえも、マイニングプールは、正直なマイニングを放棄して即時利益を得るインセンティブを与える可能性がある。
関連論文リスト
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - Fully Automated Selfish Mining Analysis in Efficient Proof Systems Blockchains [5.864854777864723]
私たちは、Bitcoinのような長鎖ブロックチェーンにおける自己中心的なマイニング攻撃について研究していますが、そこでは、作業の証明が効率的な証明システムに置き換えられます。
本稿では,敵の相対収益を最大化することを目的とした,新たな自尊心のあるマイニング攻撃を提案する。
本稿では,MDP の最適相対収益を$epsilon$-tight で計算する形式解析手法を提案する。
論文 参考訳(メタデータ) (2024-05-07T15:44:39Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Undetectable Selfish Mining [4.625489011466493]
戦略的Bitcoinマイナーは、意図されたBitcoinプロトコルから逸脱することで利益を得ることができる。
我々は、統計的に検出不可能な、利己的なマイニング変異体を開発する。
我々の戦略は、総ハッシュレートの38.2% ll 50% の攻撃者にとって厳格に利益があることを示している。
論文 参考訳(メタデータ) (2023-09-13T09:51:32Z) - Nik Defense: An Artificial Intelligence Based Defense Mechanism against
Selfish Mining in Bitcoin [1.160208922584163]
Bitcoinマイニングのプロトコルはインセンティブ互換ではない。
計算能力が高いノードでは、フェアシェアよりも多くの収益を得ることができる。
我々は,自尊心の強いマイニング攻撃に対する人工知能による防御を提案する。
論文 参考訳(メタデータ) (2023-01-26T23:30:44Z) - Partial Selfish Mining for More Profits [21.636578888742477]
マイニング攻撃は、ブロックチェーンマイニングにおける余分な報酬の不正なシェアを獲得することを目的としている。
本稿では,PSM(Partial Selfish Mining)攻撃を新たに提案する。
PSM攻撃者は、一定範囲の採掘力とネットワーク条件下で、利己的な鉱山労働者よりも利益があることを示す。
論文 参考訳(メタデータ) (2022-07-27T11:58:38Z) - A Collaboration Strategy in the Mining Pool for
Proof-of-Neural-Architecture Consensus [16.372941299296652]
一般に普及している暗号通貨システムでは、マイニングプールが重要な役割を担っている。
最近の多くの新しいブロックチェーンコンセンサスにおいて、ディープラーニングトレーニング手順は、マイナーが自身のワークロードを証明するタスクになる。
鉱山労働者のインセンティブはトークンを得ることであるが、個々の鉱山労働者はより競争力を高めるために鉱山プールに参加する動機がある。
論文 参考訳(メタデータ) (2022-05-05T17:08:02Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
作業の証明(英: proof of work、PoW)は、当事者が計算タスクの解決にいくらかの労力を費やしたことを他人に納得させることができる重要な暗号構造である。
本研究では、量子戦略に対してそのようなPoWの連鎖を見つけることの難しさについて検討する。
我々は、PoWs問題の連鎖が、マルチソリューションBernoulliサーチと呼ばれる問題に還元されることを証明し、量子クエリの複雑さを確立する。
論文 参考訳(メタデータ) (2020-12-30T18:03:56Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
インターネット上のコミュニティによって組織されたポンプとダンプの詳細な分析を行う。
これらのコミュニティがどのように組織化され、どのように詐欺を行うかを観察します。
本研究では,不正行為をリアルタイムに検出する手法を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:36:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。