On-Board Vision-Language Models for Personalized Autonomous Vehicle Motion Control: System Design and Real-World Validation
- URL: http://arxiv.org/abs/2411.11913v1
- Date: Sun, 17 Nov 2024 23:20:37 GMT
- Title: On-Board Vision-Language Models for Personalized Autonomous Vehicle Motion Control: System Design and Real-World Validation
- Authors: Can Cui, Zichong Yang, Yupeng Zhou, Juntong Peng, Sung-Yeon Park, Cong Zhang, Yunsheng Ma, Xu Cao, Wenqian Ye, Yiheng Feng, Jitesh Panchal, Lingxi Li, Yaobin Chen, Ziran Wang,
- Abstract summary: Vision-Language Models (VLMs) offer promising solutions to personalized driving.
We propose a lightweight yet effective on-board VLM framework that provides low-latency personalized driving performance.
Our system has demonstrated the ability to provide safe, comfortable, and personalized driving experiences across various scenarios.
- Score: 17.085548386025412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized driving refers to an autonomous vehicle's ability to adapt its driving behavior or control strategies to match individual users' preferences and driving styles while maintaining safety and comfort standards. However, existing works either fail to capture every individual preference precisely or become computationally inefficient as the user base expands. Vision-Language Models (VLMs) offer promising solutions to this front through their natural language understanding and scene reasoning capabilities. In this work, we propose a lightweight yet effective on-board VLM framework that provides low-latency personalized driving performance while maintaining strong reasoning capabilities. Our solution incorporates a Retrieval-Augmented Generation (RAG)-based memory module that enables continuous learning of individual driving preferences through human feedback. Through comprehensive real-world vehicle deployment and experiments, our system has demonstrated the ability to provide safe, comfortable, and personalized driving experiences across various scenarios and significantly reduce takeover rates by up to 76.9%. To the best of our knowledge, this work represents the first end-to-end VLM-based motion control system in real-world autonomous vehicles.
Related papers
- Multi-Objective Reinforcement Learning for Adaptable Personalized Autonomous Driving [9.637200409973804]
Existing end-to-end driving approaches often rely on predefined driving styles or require continuous user feedback for adaptation.<n>We propose a novel learning (MORL) approach for autonomous driving that supports dynamic, context-dependent preferences.
arXiv Detail & Related papers (2025-05-08T13:16:37Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
Vision-language models (VLMs) often suffer from limitations such as inadequate spatial perception and hallucination.
We propose a retrieval-augmented decision-making (RAD) framework to enhance VLMs' capabilities to reliably generate meta-actions in autonomous driving scenes.
We fine-tune VLMs on a dataset derived from the NuScenes dataset to enhance their spatial perception and bird's-eye view image comprehension capabilities.
arXiv Detail & Related papers (2025-03-18T03:25:57Z) - NDST: Neural Driving Style Transfer for Human-Like Vision-Based Autonomous Driving [6.342339536410644]
The paper proposes a novel approach, Neural Driving Style Transfer (NDST) to enhance user comfort in Autonomous Driving (AD)
NDST integrates a Personalized Block (PB) into the conventional Baseline Driving Model (BDM)
The PB serves as a self-configuring system, learning and adapting to an individual's driving behavior without requiring modifications to the BDM.
arXiv Detail & Related papers (2024-07-10T22:26:45Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems [28.263763430300504]
We propose a data-driven car-following model that allows for adjusting driving discourtesy levels.
Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
arXiv Detail & Related papers (2024-06-23T15:04:07Z) - Parameterized Decision-making with Multi-modal Perception for Autonomous
Driving [12.21578713219778]
We propose a parameterized decision-making framework with multi-modal perception based on deep reinforcement learning, called AUTO.
A hybrid reward function takes into account aspects of safety, traffic efficiency, passenger comfort, and impact to guide the framework to generate optimal actions.
arXiv Detail & Related papers (2023-12-19T08:27:02Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
We propose a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles.
Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks.
We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands.
arXiv Detail & Related papers (2023-10-12T04:56:01Z) - DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model [84.29836263441136]
This study introduces DriveGPT4, a novel interpretable end-to-end autonomous driving system based on multimodal large language models (MLLMs)
DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users.
arXiv Detail & Related papers (2023-10-02T17:59:52Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.