EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems
- URL: http://arxiv.org/abs/2407.02516v1
- Date: Sun, 23 Jun 2024 15:04:07 GMT
- Title: EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems
- Authors: Xianda Chen, Xu Han, Meixin Zhu, Xiaowen Chu, PakHin Tiu, Xinhu Zheng, Yinhai Wang,
- Abstract summary: We propose a data-driven car-following model that allows for adjusting driving discourtesy levels.
Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
- Score: 28.263763430300504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of driving technologies, fully autonomous vehicles have not been widely adopted yet, making advanced driver assistance systems (ADAS) crucial for enhancing driving experiences. Adaptive Cruise Control (ACC) emerges as a pivotal component of ADAS. However, current ACC systems often employ fixed settings, failing to intuitively capture drivers' social preferences and leading to potential function disengagement. To overcome these limitations, we propose the Editable Behavior Generation (EBG) model, a data-driven car-following model that allows for adjusting driving discourtesy levels. The framework integrates diverse courtesy calculation methods into long short-term memory (LSTM) and Transformer architectures, offering a comprehensive approach to capture nuanced driving dynamics. By integrating various discourtesy values during the training process, our model generates realistic agent trajectories with different levels of courtesy in car-following behavior. Experimental results on the HighD and Waymo datasets showcase a reduction in Mean Squared Error (MSE) of spacing and MSE of speed compared to baselines, establishing style controllability. To the best of our knowledge, this work represents the first data-driven car-following model capable of dynamically adjusting discourtesy levels. Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
Related papers
- First, Learn What You Don't Know: Active Information Gathering for Driving at the Limits of Handling [38.468291768795865]
In unstable systems, online adaptation may not be fast enough to ensure reliable simultaneous learning and control.
We present a Bayesian meta-learning MPC framework to enable rapid online adaptation.
Experiments on a Toyota Supra show that the framework enables reliable control in dynamic drifting maneuvers.
arXiv Detail & Related papers (2024-10-31T18:02:30Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - LSTM-based Preceding Vehicle Behaviour Prediction during Aggressive Lane
Change for ACC Application [4.693170687870612]
We propose a Long Short-Term Memory (LSTM) based Adaptive Cruise Control (ACC) system.
The model is constructed based on the real-world highD dataset, acquired from German highways with the assistance of camera-equipped drones.
We show that the LSTM-based system is 19.25% more accurate than the ANN model and 5.9% more accurate than the MPC model in terms of predicting future values of subject vehicle acceleration.
arXiv Detail & Related papers (2023-05-01T21:33:40Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - TransDARC: Transformer-based Driver Activity Recognition with Latent
Space Feature Calibration [31.908276711898548]
We present a vision-based framework for recognizing secondary driver behaviours based on visual transformers and an augmented feature distribution calibration module.
Our framework consistently leads to better recognition rates, surpassing previous state-of-the-art results of the public Drive&Act benchmark on all levels.
arXiv Detail & Related papers (2022-03-02T08:14:06Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
arXiv Detail & Related papers (2021-10-22T15:25:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.