Multi-Objective Reinforcement Learning for Adaptable Personalized Autonomous Driving
- URL: http://arxiv.org/abs/2505.05223v2
- Date: Fri, 18 Jul 2025 15:16:10 GMT
- Title: Multi-Objective Reinforcement Learning for Adaptable Personalized Autonomous Driving
- Authors: Hendrik Surmann, Jorge de Heuvel, Maren Bennewitz,
- Abstract summary: Existing end-to-end driving approaches often rely on predefined driving styles or require continuous user feedback for adaptation.<n>We propose a novel learning (MORL) approach for autonomous driving that supports dynamic, context-dependent preferences.
- Score: 9.637200409973804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human drivers exhibit individual preferences regarding driving style. Adapting autonomous vehicles to these preferences is essential for user trust and satisfaction. However, existing end-to-end driving approaches often rely on predefined driving styles or require continuous user feedback for adaptation, limiting their ability to support dynamic, context-dependent preferences. We propose a novel approach using multi-objective reinforcement learning (MORL) with preference-driven optimization for end-to-end autonomous driving that enables runtime adaptation to driving style preferences. Preferences are encoded as continuous weight vectors to modulate behavior along interpretable style objectives$\unicode{x2013}$including efficiency, comfort, speed, and aggressiveness$\unicode{x2013}$without requiring policy retraining. Our single-policy agent integrates vision-based perception in complex mixed-traffic scenarios and is evaluated in diverse urban environments using the CARLA simulator. Experimental results demonstrate that the agent dynamically adapts its driving behavior according to changing preferences while maintaining performance in terms of collision avoidance and route completion.
Related papers
- Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - On-Board Vision-Language Models for Personalized Autonomous Vehicle Motion Control: System Design and Real-World Validation [17.085548386025412]
Vision-Language Models (VLMs) offer promising solutions to personalized driving.
We propose a lightweight yet effective on-board VLM framework that provides low-latency personalized driving performance.
Our system has demonstrated the ability to provide safe, comfortable, and personalized driving experiences across various scenarios.
arXiv Detail & Related papers (2024-11-17T23:20:37Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Looking for a better fit? An Incremental Learning Multimodal Object
Referencing Framework adapting to Individual Drivers [0.0]
The rapid advancement of the automotive industry has rendered traditional methods of vehicle interaction, such as touch-based and voice command systems, inadequate for a widening range of non-driving related tasks, such as referencing objects outside of the vehicle.
We propose textitIcRegress, a novel regression-based incremental learning approach that adapts to changing behavior and the unique characteristics of drivers engaged in the dual task of driving and referencing objects.
arXiv Detail & Related papers (2024-01-29T12:48:56Z) - Bi-Level Optimization Augmented with Conditional Variational Autoencoder
for Autonomous Driving in Dense Traffic [0.9281671380673306]
This paper presents a parameterized bi-level optimization that jointly computes the optimal behavioural decisions and the resulting trajectory.
Our approach runs in real-time using a custom GPU-accelerated batch, and a Variational Autoencoder learnt warm-start strategy.
Our approach outperforms state-of-the-art model predictive control and RL approaches in terms of collision rate while being competitive in driving efficiency.
arXiv Detail & Related papers (2022-12-05T12:56:42Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
This paper presents a multi-layer motion planning and control architecture for autonomous racing.
The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s2$.
arXiv Detail & Related papers (2022-07-22T15:16:54Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
We show how the model can be inverted to estimate driver preferences from naturalistic traffic data.
One distinct advantage of our approach is the drastically reduced computational burden.
arXiv Detail & Related papers (2021-05-05T01:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.