Artificial Intelligence Mangrove Monitoring System Based on Deep Learning and Sentinel-2 Satellite Data in the UAE (2017-2024)
- URL: http://arxiv.org/abs/2411.11918v1
- Date: Mon, 18 Nov 2024 03:37:33 GMT
- Title: Artificial Intelligence Mangrove Monitoring System Based on Deep Learning and Sentinel-2 Satellite Data in the UAE (2017-2024)
- Authors: Linlin Tan, Haishan Wu,
- Abstract summary: The total mangrove area in the UAE in 2024 was approximately 9,142.21 hectares, an increase of 2,061.33 hectares compared to 2017.
Abu Dhabi has the largest mangrove area and plays a dominant role in the UAE's mangrove growth, increasing by 1,85 hectares between 2017-2024.
- Score: 0.0
- License:
- Abstract: Mangroves play a crucial role in maintaining coastal ecosystem health and protecting biodiversity. Therefore, continuous mapping of mangroves is essential for understanding their dynamics. Earth observation imagery typically provides a cost-effective way to monitor mangrove dynamics. However, there is a lack of regional studies on mangrove areas in the UAE. This study utilizes the UNet++ deep learning model combined with Sentinel-2 multispectral data and manually annotated labels to monitor the spatiotemporal dynamics of densely distributed mangroves (coverage greater than 70%) in the UAE from 2017 to 2024, achieving an mIoU of 87.8% on the validation set. Results show that the total mangrove area in the UAE in 2024 was approximately 9,142.21 hectares, an increase of 2,061.33 hectares compared to 2017, with carbon sequestration increasing by approximately 194,383.42 tons. Abu Dhabi has the largest mangrove area and plays a dominant role in the UAE's mangrove growth, increasing by 1,855.6 hectares between 2017-2024, while other emirates have also contributed to mangrove expansion through stable and sustainable growth in mangrove areas. This comprehensive growth pattern reflects the collective efforts of all emirates in mangrove restoration.
Related papers
- The unrealized potential of agroforestry for an emissions-intensive agricultural commodity [48.652015514785546]
We use machine learning to generate estimates of shade-tree cover and carbon stocks across a West African region.
We find that existing shade-tree cover is low, and not spatially aligned with climate threat.
But we also find enormous unrealized potential for the sector to counterbalance a large proportion of their high carbon footprint annually.
arXiv Detail & Related papers (2024-10-28T10:02:32Z) - A Deep Learning-Based Approach for Mangrove Monitoring [0.0]
This work provides a comprehensive evaluation of recent deep-learning models on the task of mangrove segmentation.
We first introduce and make available a novel open-source dataset, MagSet-2, incorporating mangrove annotations from the Global Mangrove Watch and satellite images from Sentinel-2.
We then benchmark three architectural groups, namely convolutional, transformer, and mamba models, using the created dataset.
arXiv Detail & Related papers (2024-10-07T19:22:08Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities.
We propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023.
arXiv Detail & Related papers (2024-05-12T09:32:40Z) - First Mapping the Canopy Height of Primeval Forests in the Tallest Tree Area of Asia [6.826460268652235]
We have developed the world's first canopy height map of the distribution area of world-level giant trees.
This mapping is crucial for discovering more individual and community world-level giant trees.
arXiv Detail & Related papers (2024-04-23T01:45:55Z) - Machine Learning Reveals Large-scale Impact of Posidonia Oceanica on
Mediterranean Sea Water [0.0818489539741914]
Posidonia oceanica is a protected endemic seagrass of Mediterranean sea that fosters biodiversity, stores carbon, releases oxygen, and provides habitat to numerous sea organisms.
The study provides the evidence of the plant's ability to exert a global impact on the environment and underscores the crucial role of this plant in sea ecosystems.
arXiv Detail & Related papers (2024-02-22T11:35:52Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Mapping smallholder cashew plantations to inform sustainable tree crop
expansion in Benin [4.008214303620168]
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide.
Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings.
By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, we produced the first national map of cashew in Benin.
arXiv Detail & Related papers (2023-01-01T07:18:47Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - High carbon stock mapping at large scale with optical satellite imagery
and spaceborne LIDAR [27.25600860698314]
Deforestation, which causes high carbon emissions and threatens biodiversity, is often linked to agricultural expansion.
We propose an automated approach that aims to support conservation and sustainable land use planning decisions.
A deep learning approach is developed that estimates canopy height for each 10 m Sentinel-2 pixel by learning from sparse GEDI LIDAR reference data.
We show that these wall-to-wall maps of canopy top height are predictive for classifying HCS forests and degraded areas with an overall accuracy of 86 % and produce a first high carbon stock map for Indonesia, Malaysia, and the Philippines.
arXiv Detail & Related papers (2021-07-15T16:21:21Z) - Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution
Satellite Imagery [59.32805936205217]
Cattle farming is responsible for 8.8% of greenhouse gas emissions worldwide.
We obtained satellite imagery of the Amazon at 40cm resolution, and compiled a dataset of 903 images containing a total of 28498 cattle.
Our experiments show promising results and highlight important directions for the next steps on both counting algorithms and the data collection process for solving such challenges.
arXiv Detail & Related papers (2020-11-14T19:07:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.