論文の概要: Fine-Grained Uncertainty Quantification via Collisions
- arxiv url: http://arxiv.org/abs/2411.12127v1
- Date: Mon, 18 Nov 2024 23:41:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:48.953421
- Title: Fine-Grained Uncertainty Quantification via Collisions
- Title(参考訳): 衝突による微粒不確かさの定量化
- Authors: Jesse Friedbaum, Sudarshan Adiga, Ravi Tandon,
- Abstract要約: 衝突行列を用いた微細不確実性定量化(UQ)のための新しい手法を提案する。
K 時間 K$ クラスを含む分類問題に対して、衝突行列 $S$ は各クラスを区別する固有の(アラート的な)困難を測る。
既存のUQ法とは対照的に、衝突行列は分類の難しさをより詳細に示す。
- 参考スコア(独自算出の注目度): 8.159697831570593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new approach for fine-grained uncertainty quantification (UQ) using a collision matrix. For a classification problem involving $K$ classes, the $K\times K$ collision matrix $S$ measures the inherent (aleatoric) difficulty in distinguishing between each pair of classes. In contrast to existing UQ methods, the collision matrix gives a much more detailed picture of the difficulty of classification. We discuss several possible downstream applications of the collision matrix, establish its fundamental mathematical properties, as well as show its relationship with existing UQ methods, including the Bayes error rate. We also address the new problem of estimating the collision matrix using one-hot labeled data. We propose a series of innovative techniques to estimate $S$. First, we learn a contrastive binary classifier which takes two inputs and determines if they belong to the same class. We then show that this contrastive classifier (which is PAC learnable) can be used to reliably estimate the Gramian matrix of $S$, defined as $G=S^TS$. Finally, we show that under very mild assumptions, $G$ can be used to uniquely recover $S$, a new result on stochastic matrices which could be of independent interest. Experimental results are also presented to validate our methods on several datasets.
- Abstract(参考訳): 衝突行列を用いた微細不確実性定量化(UQ)のための新しい手法を提案する。
K$のクラスを含む分類問題に対して、$K\times K$の衝突行列$S$は、各クラスを区別する固有の(アラート的な)困難を測る。
既存のUQ法とは対照的に、衝突行列は分類の難しさをより詳細に示す。
衝突行列の下流でのいくつかの応用について論じ、その基本的な数学的性質を確立し、ベイズ誤差率を含む既存のUQ手法との関係を示す。
また、1ホットラベル付きデータを用いて衝突行列を推定する新しい問題にも対処する。
我々は、$S$を見積もる一連の革新的な手法を提案する。
まず、2つの入力を受け取り、それらが同じクラスに属するかどうかを判定する対照的な二項分類法を学習する。
次に、この対照的な分類器(PACが学習可能な)を用いて、$G=S^TS$として定義される$S$のグラミアン行列を確実に推定できることを示す。
最後に、非常に穏やかな仮定の下で、$G$は独立な関心を持つ確率行列の新しい結果である$S$を一意に回収するために使用できることを示す。
また,本手法をいくつかのデータセットで検証する実験結果も提示した。
関連論文リスト
- Learnable Similarity and Dissimilarity Guided Symmetric Non-Negative Matrix Factorization [18.53944578996308]
学習可能な重み付き$k$-NNグラフを構築し、各$k$-th NNの信頼性を反映する。
識別的類似度行列を得るために,類似度行列の二重構造を持つ相似性行列を導入する。
提案したモデルを解決するために,効率的な代替最適化アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-12-05T11:32:53Z) - Model-free Low-Rank Reinforcement Learning via Leveraged Entry-wise Matrix Estimation [48.92318828548911]
政策改善と政策評価の段階を交互に行うモデルフリー学習アルゴリズムであるLoRa-PI(Low-Rank Policy Iteration)を提案する。
LoRa-PIは$widetildeO(S+Aover mathrmpoly (1-gamma)varepsilon2)$サンプルを使用して$varepsilon$-optimal Policyを学習する。
論文 参考訳(メタデータ) (2024-10-30T20:22:17Z) - Optimal level set estimation for non-parametric tournament and crowdsourcing problems [49.75262185577198]
クラウドソーシングによって動機づけられた我々は、$d$の質問に対する$n$の専門家の回答の正しさを部分的に観察する問題を考える。
本稿では、専門家$i$が疑問に答える確率を含む行列$M$が、行と列の置換までの双等方性であることを仮定する。
我々は,この分類問題に対して最小限のアルゴリズムを最適に構築する。
論文 参考訳(メタデータ) (2024-08-27T18:28:31Z) - On Characterizing and Mitigating Imbalances in Multi-Instance Partial Label Learning [57.18649648182171]
我々は、MI-PLLの文脈において、これまで研究されていない問題に対処するためのコントリビューションを行っている。
最小限の仮定をしながら、クラス固有のMI-PLLのリスク境界を導出する。
我々の理論は、$sigma$が学習の不均衡に大きな影響を及ぼすというユニークな現象を明らかにしている。
論文 参考訳(メタデータ) (2024-07-13T20:56:34Z) - Kernel-Based Tests for Likelihood-Free Hypothesis Testing [21.143798051525646]
2つのバランスの取れたクラスから$n$の観測が与えられたとき、追加の$m$入力をラベル付けするタスクを考える。
この問題の特別なケースはよく知られており、$m=1$はバイナリ分類に対応し、$mapprox n$は2サンプルテストに相当する。
最近の研究で、$m$と$n$の間に根本的なトレードオフがあることが判明した。
論文 参考訳(メタデータ) (2023-08-17T15:24:03Z) - Sparse Gaussian Graphical Models with Discrete Optimization:
Computational and Statistical Perspectives [8.403841349300103]
本研究では,無向ガウス図形モデルに基づくスパースグラフの学習問題を考察する。
擬似微分関数の $ell_0$-penalized バージョンに基づく新しい推定器 GraphL0BnB を提案する。
実/合成データセットに関する数値実験により,本手法がほぼ最適に,p = 104$の問題を解けることが示唆された。
論文 参考訳(メタデータ) (2023-07-18T15:49:02Z) - Replicable Clustering [57.19013971737493]
我々は,統計学的な$k$-medians,統計学的な$k$-means,統計学的な$k$-centers問題のアルゴリズムをブラックボックス方式で近似ルーチンを用いて提案する。
理論的結果を検証するブラックボックスとしてsklearnの$k$-means++実装を用いた2次元合成分布の実験も行っている。
論文 参考訳(メタデータ) (2023-02-20T23:29:43Z) - Majorization-minimization for Sparse Nonnegative Matrix Factorization
with the $\beta$-divergence [2.3787352248749376]
他の因子(辞書行列)のノルムは不正な定式化を避けるために制御する必要があることはよく知られている。
標準のプラクティスは、辞書の列に単位ノルムを持つよう制約することであり、これは非自明な最適化問題につながる。
我々は,$ell_1$-regularization あるいはより "攻撃的" なログ規則化に対して,単純な乗法的更新をもたらすブロック・ディフレッシブ・プライマリゼーション・最小化アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-07-13T16:09:29Z) - Classification of high-dimensional data with spiked covariance matrix
structure [0.2741266294612775]
我々は高次元データの分類問題を$n$で研究し、$p$の特徴を観察する。
本稿では,まず,次元還元空間における分類に先立って特徴ベクトルの次元還元を行う適応型分類器を提案する。
結果の分類器は、$n rightarrow infty$ および $s sqrtn-1 ln p rightarrow 0$ のときにベイズ最適であることが示される。
論文 参考訳(メタデータ) (2021-10-05T11:26:53Z) - Statistical limits of dictionary learning: random matrix theory and the
spectral replica method [28.54289139061295]
ベイズ最適設定における行列記述と辞書学習の複雑なモデルについて考察する。
本稿では, 統計力学とランダム行列理論, スペクトル複製法を組み合わせた新しいレプリカ法を提案する。
論文 参考訳(メタデータ) (2021-09-14T12:02:32Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
本稿では,データセットの大部分を敵が破壊できるリストデコタブル平均推定の問題について検討する。
我々は、ほぼ最適な統計的保証を達成するために、リストデコダブル平均推定のための新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-16T03:34:14Z) - On Misspecification in Prediction Problems and Robustness via Improper
Learning [23.64462813525688]
広い種類の損失関数とパラメトリック分布の族に対して、"プロパ"予測子をプレイしたことの後悔は、少なくとも$sqrtgamma n$として境界スケーリングを下げていることが示される。
パラメトリックファミリーの凸体で分布を再生する可能性のあるすべての学習者の家族にしても、これは改善できない例を示します。
論文 参考訳(メタデータ) (2021-01-13T17:54:08Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
サブサンプルサイズが大きくなると、推定誤差が過度に犠牲になることを示す。
私たちの知る限りでは、線形テキスト+確率モデルが保証される最初の研究です。
論文 参考訳(メタデータ) (2020-10-19T07:15:38Z) - Multi-label Contrastive Predictive Coding [125.03510235962095]
差分相互情報(MI)推定器は、コントラスト予測符号化(CPC)のような教師なし表現学習法で広く利用されている。
本稿では,複数の正のサンプルを同時に同定する必要がある多ラベル分類問題に基づく新しい推定器を提案する。
同一量の負のサンプルを用いて複数ラベルのCPCが$log m$boundを超えることができる一方で、相互情報の有意な下限であることを示す。
論文 参考訳(メタデータ) (2020-07-20T02:46:21Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
本研究では,高次元ガウス混合系の対向ロバスト条件下での効率的な学習性について検討する。
理論的に最適に近い誤り証明である$tildeO(epsilon)$の情報を、$epsilon$-corrupted $k$-mixtureで学習するアルゴリズムを提供する。
我々の主な技術的貢献は、ガウス混合系からの新しい頑健な識別可能性証明クラスターであり、これは正方形の定度証明システムによって捉えることができる。
論文 参考訳(メタデータ) (2020-05-13T16:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。