論文の概要: Visualizing Loss Functions as Topological Landscape Profiles
- arxiv url: http://arxiv.org/abs/2411.12136v1
- Date: Tue, 19 Nov 2024 00:28:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:51.422561
- Title: Visualizing Loss Functions as Topological Landscape Profiles
- Title(参考訳): トポロジカルランドスケーププロファイルとしての損失関数の可視化
- Authors: Caleb Geniesse, Jiaqing Chen, Tiankai Xie, Ge Shi, Yaoqing Yang, Dmitriy Morozov, Talita Perciano, Michael W. Mahoney, Ross Maciejewski, Gunther H. Weber,
- Abstract要約: 機械学習では、損失関数はモデル予測と接地真実(または目標)値の違いを測定する。
ニューラルネットワークモデルでは、モデルパラメータが変化するにつれてこの損失がどのように変化するかを視覚化することで、いわゆるロスランドスケープの局所構造に関する洞察を得ることができる。
本稿では,高次元ロスランドスケープの可視化を可能にするトポロジカルデータ解析に基づく新しい表現を提案する。
- 参考スコア(独自算出の注目度): 41.15010759601887
- License:
- Abstract: In machine learning, a loss function measures the difference between model predictions and ground-truth (or target) values. For neural network models, visualizing how this loss changes as model parameters are varied can provide insights into the local structure of the so-called loss landscape (e.g., smoothness) as well as global properties of the underlying model (e.g., generalization performance). While various methods for visualizing the loss landscape have been proposed, many approaches limit sampling to just one or two directions, ignoring potentially relevant information in this extremely high-dimensional space. This paper introduces a new representation based on topological data analysis that enables the visualization of higher-dimensional loss landscapes. After describing this new topological landscape profile representation, we show how the shape of loss landscapes can reveal new details about model performance and learning dynamics, highlighting several use cases, including image segmentation (e.g., UNet) and scientific machine learning (e.g., physics-informed neural networks). Through these examples, we provide new insights into how loss landscapes vary across distinct hyperparameter spaces: we find that the topology of the loss landscape is simpler for better-performing models; and we observe greater variation in the shape of loss landscapes near transitions from low to high model performance.
- Abstract(参考訳): 機械学習では、損失関数はモデル予測と接地真実(または目標)値の違いを測定する。
ニューラルネットワークモデルでは、モデルパラメータが変化するにつれてこの損失がどのように変化するかを視覚化することで、いわゆるロスランドスケープ(例えば、滑らかさ)の局所的な構造と、基盤となるモデルのグローバルな特性(例えば、一般化性能)に関する洞察を得ることができる。
ロスランドスケープを可視化する様々な手法が提案されているが、多くのアプローチはサンプリングを1、2方向だけに制限し、この非常に高次元空間における潜在的関連情報を無視する。
本稿では,高次元ロスランドスケープの可視化を可能にするトポロジカルデータ解析に基づく新しい表現を提案する。
この新たなトポロジカルランドスケーププロファイル表現を説明した後、損失ランドスケープの形状がモデルパフォーマンスと学習ダイナミクスに関する新たな詳細を明らかにし、画像セグメンテーション(例:UNet)や科学機械学習(例:物理インフォームドニューラルネットワーク)など、いくつかのユースケースを強調した。
これらの例を通して、損失景観が異なるハイパーパラメータ空間でどのように異なるかの新しい知見を提供する。損失景観のトポロジは、より良い性能のモデルでより単純であること、低モデルから高モデルへの遷移に近い損失景観の形状の変化を観察する。
関連論文リスト
- Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes [0.0]
我々は、完全に連結されたニューラルネットワークにおける損失景観の収束を理論的に解析し、新しいオブジェクトをサンプルに追加する際の損失関数値の差について上限を導出する。
画像分類作業における損失関数面の収束を実証し,これらの結果を様々なデータセットで検証した。
論文 参考訳(メタデータ) (2024-09-18T14:04:15Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Doubly Reparameterized Importance Weighted Structure Learning for Scene
Graph Generation [40.46394569128303]
入力画像が与えられたシーングラフ生成は、視覚的に接地されたシーングラフを構築することにより、オブジェクトとその関係を明示的にモデル化することを目的としている。
本稿では,より厳密な重み付き下界を変分推論対象として用いた2重み付き重み付き構造学習法を提案する。
提案手法は,様々な人気シーングラフ生成ベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-06-22T20:00:25Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Taxonomizing local versus global structure in neural network loss
landscapes [60.206524503782006]
ロスランドスケープが世界規模で良好に接続されている場合, 最適なテスト精度が得られることを示す。
また、モデルが小さい場合や、品質の低いデータに訓練された場合、世界規模で接続の不十分なランドスケープが生じる可能性があることも示しています。
論文 参考訳(メタデータ) (2021-07-23T13:37:14Z) - Extracting Global Dynamics of Loss Landscape in Deep Learning Models [0.0]
本稿では,DOODL3 (Dynamical Organization of Deep Learning Loss Landscapes) のためのツールキットを提案する。
DOODL3は、ニューラルネットワークのトレーニングを動的システムとして定式化し、学習プロセスを分析し、損失ランドスケープにおける軌跡の解釈可能なグローバルビューを示す。
論文 参考訳(メタデータ) (2021-06-14T18:07:05Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。