論文の概要: Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes
- arxiv url: http://arxiv.org/abs/2409.11995v1
- Date: Wed, 18 Sep 2024 14:04:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 17:24:06.809212
- Title: Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes
- Title(参考訳): Hessian:Loss Functionのランドスケープにおけるスムーズな収束の鍵
- Authors: Nikita Kiselev, Andrey Grabovoy,
- Abstract要約: 我々は、完全に連結されたニューラルネットワークにおける損失景観の収束を理論的に解析し、新しいオブジェクトをサンプルに追加する際の損失関数値の差について上限を導出する。
画像分類作業における損失関数面の収束を実証し,これらの結果を様々なデータセットで検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The loss landscape of neural networks is a critical aspect of their training, and understanding its properties is essential for improving their performance. In this paper, we investigate how the loss surface changes when the sample size increases, a previously unexplored issue. We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample. Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks. Our findings provide insights into the local geometry of neural loss landscapes and have implications for the development of sample size determination techniques.
- Abstract(参考訳): ニューラルネットワークのロスランドスケープは、トレーニングの重要な側面であり、その特性を理解することが、パフォーマンス向上に不可欠である。
本稿では,サンプルサイズが大きくなると損失面がどう変化するかを検討する。
我々は、完全に連結されたニューラルネットワークにおける損失景観の収束を理論的に解析し、新しいオブジェクトをサンプルに追加する際の損失関数値の差について上限を導出する。
画像分類作業における損失関数面の収束を実証し,これらの結果を様々なデータセットで検証した。
本研究は, ニューラルロスランドスケープの局所的形状に関する知見を提供し, サンプルサイズ決定技術の発展に寄与するものである。
関連論文リスト
- Dynamical loss functions shape landscape topography and improve learning in artificial neural networks [0.9208007322096533]
クロスエントロピーと平均二乗誤差を動的損失関数に変換する方法を示す。
異なるサイズのネットワークに対する検証精度を大幅に向上させる方法を示す。
論文 参考訳(メタデータ) (2024-10-14T16:27:03Z) - A topological description of loss surfaces based on Betti Numbers [8.539445673580252]
多層ニューラルネットワークの場合の損失複雑性を評価するためのトポロジカル尺度を提供する。
損失関数やモデルアーキテクチャの特定のバリエーション、例えば$ell$正規化項の追加やフィードフォワードネットワークでの接続のスキップは、特定のケースにおける損失には影響しない。
論文 参考訳(メタデータ) (2024-01-08T11:20:04Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Critical Investigation of Failure Modes in Physics-informed Neural
Networks [0.9137554315375919]
合成定式化による物理インフォームドニューラルネットワークは、最適化が難しい非学習損失面を生成することを示す。
また,2つの楕円問題に対する2つのアプローチを,より複雑な目標解を用いて評価する。
論文 参考訳(メタデータ) (2022-06-20T18:43:35Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Taxonomizing local versus global structure in neural network loss
landscapes [60.206524503782006]
ロスランドスケープが世界規模で良好に接続されている場合, 最適なテスト精度が得られることを示す。
また、モデルが小さい場合や、品質の低いデータに訓練された場合、世界規模で接続の不十分なランドスケープが生じる可能性があることも示しています。
論文 参考訳(メタデータ) (2021-07-23T13:37:14Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - An Equivalence between Loss Functions and Non-Uniform Sampling in
Experience Replay [72.23433407017558]
非一様サンプルデータを用いて評価された損失関数は、別の一様サンプルデータ損失関数に変換可能であることを示す。
驚いたことに、いくつかの環境では、PERは経験的パフォーマンスに影響を与えることなく、この新たな損失関数に完全に置き換えることができる。
論文 参考訳(メタデータ) (2020-07-12T17:45:24Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。