Nonassociative gauge gravity theories with R-flux star products and Batalin-Vilkovisky quantization in algebraic quantum field theory
- URL: http://arxiv.org/abs/2411.12158v1
- Date: Tue, 19 Nov 2024 01:41:57 GMT
- Title: Nonassociative gauge gravity theories with R-flux star products and Batalin-Vilkovisky quantization in algebraic quantum field theory
- Authors: Sergiu I. Vacaru,
- Abstract summary: Nonassociative modifications of general relativity, GR, and quantum gravity, QG, arise as star product and R-flux deformations considered in string/ M-theory.
Such nonassociative and noncommutative geometric and quantum information theories were formulated on phase spaces defined as cotangent Lorentz bundles enabled with nonassociative symmetric and nonsymmetric metrics and nonlinear and linear connection structures.
- Score: 0.0
- License:
- Abstract: Nonassociative modifications of general relativity, GR, and quantum gravity, QG, models naturally arise as star product and R-flux deformations considered in string/ M-theory. Such nonassociative and noncommutative geometric and quantum information theories were formulated on phase spaces defined as cotangent Lorentz bundles enabled with nonassociative symmetric and nonsymmetric metrics and nonlinear and linear connection structures. We outline the analytic methods and proofs that corresponding geometric flow evolution and dynamical field equations can be decoupled and integrated in certain general off-diagonal forms. New classes of solutions describing nonassociative black holes, wormholes, and locally anisotropic cosmological configurations are constructed using such methods. We develop the Batalin-Vilkovisky, BV, formalism for quantizing modified gravity theories, MGTs, involving twisted star products and semi-classical models of nonassociative gauge gravity with de Sitter/affine/ Poincar\'{e} double structure groups. Such theories can be projected on Lorentz spacetime manifolds in certain forms equivalent to GR or MGTs with torsion generalizations etc. We study the properties of the classical and quantum BV operators for nonassociative phase spaces and nonassociative gauge gravity. Recent results and methods from algebraic QFT are generalized to involve nonassociative star product deformations of the anomalous master Ward identity. Such constructions are elaborated in a nonassociative BV perspective and for developing non-perturbative methods in QG.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Galois Symmetries in the Classification and Quantification of Quantum Entanglement [0.0]
We present a new interpretation of entanglement classification by revealing a profound connection to Galois groups.
This work bridges the mathematical elegance of Galois theory with the complexities of quantum mechanics, opening pathways for advances in quantum computing and information theory.
arXiv Detail & Related papers (2024-10-10T20:58:23Z) - Relational dynamics and Page-Wootters formalism in group field theory [0.0]
Group field theory posits that spacetime is emergent and is hence defined without any background notion of space or time.
There is no obvious notion of coordinate transformations or constraints, and established quantisation methods cannot be directly applied.
We use a parametrised version of group field theory, in which all (geometry and matter) degrees of freedom evolve in a fiducial parameter.
Using the "trinity of relational dynamics", we show that the resulting "clock-neutral" theory is entirely equivalent to a deparametrised canonical group field theory.
arXiv Detail & Related papers (2024-07-03T18:18:36Z) - Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Nonassociative geometric and quantum information flows and R-flux
deformations of wormhole solutions in string gravity [0.0]
We formulate the principles of nonassociative quantum geometric and information flow theory, QGIF, and study the basic properties of such quasi-stationary models related to gravity theories.
Applications are considered for nonassociative deformed and entangled couples of four-dimensional, 4-d, wormholes (defined by respective spacetime and/or momentum type coordinates) and nonassociative QGIFs of 8-d phase space generalized wormholes configurations.
arXiv Detail & Related papers (2024-02-16T14:59:24Z) - Hybrid Geometrodynamics: A Hamiltonian description of classical gravity
coupled to quantum matter [0.0]
We generalize the Hamiltonian picture of General Relativity coupled to classical matter, known as geometrodynamics, to the case where gravity is described by a Quantum Field Theory in Curved Spacetime.
In our approach there is no non-dynamic background structure, apart from the manifold of events, and the gravitational and quantum degrees of freedom have their dynamics inextricably coupled.
An important feature of this work is the use of Gaussian measures over the space of matter fields and of Hida distributions to define a common superspace to all possible Hilbert spaces with different measures, to properly characterize the Schrodinger wave functional picture of QFT in
arXiv Detail & Related papers (2023-07-03T10:46:40Z) - Deformed Heisenberg algebras of different types with preserved weak
equivalence principle [0.0]
The weak equivalence principle is preserved in quantized space if parameters of deformed algebras to be dependent on mass.
It is also shown that dependencies of parameters of deformed algebras on mass lead to preserving of the properties of the kinetic energy in quantized spaces.
arXiv Detail & Related papers (2023-02-02T17:45:45Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.