論文の概要: Diffusion-Inspired Cold Start with Sufficient Prior in Computerized Adaptive Testing
- arxiv url: http://arxiv.org/abs/2411.12182v1
- Date: Tue, 19 Nov 2024 02:48:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:38:33.844781
- Title: Diffusion-Inspired Cold Start with Sufficient Prior in Computerized Adaptive Testing
- Title(参考訳): コンピュータ適応テストにおける拡散誘導型冷間始動
- Authors: Haiping Ma, Aoqing Xia, Changqian Wang, Hai Wang, Xingyi Zhang,
- Abstract要約: コンピュータ適応テスト(CAT)は、被験者の能力に基づいて最も適切な質問を選択することを目的としている。
既存のCATシステムは、しばしば試験員の能力に対する最初の理解が欠如しており、ランダムな探索問題を必要としている。
これは、マッチの悪い質問につながり、テスト期間を延ばし、テスターの考え方に悪影響を及ぼす。
- 参考スコア(独自算出の注目度): 7.6121800609098695
- License:
- Abstract: Computerized Adaptive Testing (CAT) aims to select the most appropriate questions based on the examinee's ability and is widely used in online education. However, existing CAT systems often lack initial understanding of the examinee's ability, requiring random probing questions. This can lead to poorly matched questions, extending the test duration and negatively impacting the examinee's mindset, a phenomenon referred to as the Cold Start with Insufficient Prior (CSIP) task. This issue occurs because CAT systems do not effectively utilize the abundant prior information about the examinee available from other courses on online platforms. These response records, due to the commonality of cognitive states across different knowledge domains, can provide valuable prior information for the target domain. However, no prior work has explored solutions for the CSIP task. In response to this gap, we propose Diffusion Cognitive States TransfeR Framework (DCSR), a novel domain transfer framework based on Diffusion Models (DMs) to address the CSIP task. Specifically, we construct a cognitive state transition bridge between domains, guided by the common cognitive states of examinees, encouraging the model to reconstruct the initial ability state in the target domain. To enrich the expressive power of the generated data, we analyze the causal relationships in the generation process from a causal perspective. Redundant and extraneous cognitive states can lead to limited transfer and negative transfer effects. Our DCSR can seamlessly apply the generated initial ability states in the target domain to existing question selection algorithms, thus improving the cold start performance of the CAT system. Extensive experiments conducted on five real-world datasets demonstrate that DCSR significantly outperforms existing baseline methods in addressing the CSIP task.
- Abstract(参考訳): コンピュータ適応テスト (Computerized Adaptive Testing, CAT) は、受験者の能力に基づいて最も適切な質問を選択することを目的としており、オンライン教育で広く使われている。
しかし、既存のCATシステムは検査官の能力について最初の理解を欠くことが多く、ランダムな探索問題を必要とする。
これは、不一致の質問につながり、テスト期間を延長し、テスト担当者のマインドセットに悪影響を及ぼす可能性がある。
この問題は、CATシステムがオンラインプラットフォーム上の他のコースから入手可能な試験に関する情報を効果的に活用していないためである。
これらの応答記録は、異なる知識領域にまたがる認知状態の共通性のため、対象領域に対して貴重な事前情報を提供することができる。
しかし、CSIPタスクの解決策を探求する以前の研究は行われていない。
そこで我々は,拡散モデル(DM)に基づく新しいドメイン転送フレームワークであるDiffusion Cognitive States TransfeR Framework (DCSR)を提案する。
具体的には、被験者の共通の認知状態によって導かれるドメイン間の認知状態遷移ブリッジを構築し、対象ドメインの初期能力状態の再構築を促す。
生成したデータの表現力を高めるために,因果関係を因果的観点から分析する。
冗長で外在的な認知状態は、限られた伝達と負の伝達効果をもたらす。
我々のDCSRは、既存の質問選択アルゴリズムにターゲット領域で生成された初期能力状態をシームレスに適用し、CATシステムのコールドスタート性能を向上させることができる。
5つの実世界のデータセットで実施された大規模な実験により、DCSRはCSIPタスクに対処する上で、既存のベースラインメソッドを大幅に上回っていることが示された。
関連論文リスト
- Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
継続的なテスト時間適応は、訓練済みのソースモデルを適用して、教師なしのターゲットドメインを継続的に変更する。
我々は、オンライン環境、教師なしの自然、エラー蓄積や破滅的な忘れのリスクなど、このタスクの課題を分析する。
教師なしシングルパスデータストリームから重要サンプルを高い確実性で識別・集約する不確実性を考慮したバッファリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T15:48:40Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
脳波信号による脳-コンピュータインタフェース(aBCI)の不安定性
本稿では,メタラーニングに基づくメタドメイン適応手法を提案する。
提案手法は,パブリックなaBICsデータセットの実験において有効であることが示されている。
論文 参考訳(メタデータ) (2023-10-20T23:44:34Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Utilizing Background Knowledge for Robust Reasoning over Traffic
Situations [63.45021731775964]
我々は、インテリジェントトランスポーテーションの補完的な研究側面である交通理解に焦点を当てる。
本研究は,豊富なコモンセンス知識を前提として,テキストベースの手法とデータセットを対象とする。
交通状況に対するゼロショットQAには3つの知識駆動アプローチを採用しています。
論文 参考訳(メタデータ) (2022-12-04T09:17:24Z) - Contrastive Domain Adaptation for Early Misinformation Detection: A Case
Study on COVID-19 [8.828396559882954]
初期の誤報は、しばしば既存の誤報データに対する条件とラベルのシフトを示す。
早期誤情報検出(CANMD)のためのコントラスト適応ネットワークを提案する。
結果は、CANMDが未確認の新型コロナウイルス標的領域に誤情報検出システムを効果的に適応させることができることを示唆している。
論文 参考訳(メタデータ) (2022-08-20T02:09:35Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
対象領域のデータの性能低下に対応するために、教師なし領域適応(UDA)を提案する。
UDAは、自然言語処理、ビデオ解析、自然言語処理、時系列データ分析、医用画像解析など、有望な成果を上げている。
論文 参考訳(メタデータ) (2022-08-15T20:05:07Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
ドメイン認識コントラスト学習(Domain-Agnostic Contrastive Learning、DACL)は、2段階の非監視ドメイン適応フレームワークである。
提案手法は,従来の最新手法に比べ,単眼深度推定作業における性能向上を実現した。
論文 参考訳(メタデータ) (2021-03-10T07:06:03Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
畳み込みニューラルネットワーク(CNN)は、ラベルと相関する支配的特徴を活性化することにより、画像分類を行う。
ドメイン外データに対するCNNの一般化を著しく改善する簡単なトレーニングである自己整合表現(RSC)を導入する。
RSCはトレーニングデータ上で活性化される主要な機能に対して反復的に挑戦し、ラベルと相関する残りの機能を有効にするようネットワークに強制する。
論文 参考訳(メタデータ) (2020-07-05T21:42:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。